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In this paper, the analysis methods used for developing imaging systems estimating 

the spectral reflectance are considered. The system incorporates the estimation 

technique for the spectral reflectance. Several traditional and machine learning 

estimation techniques are compared for this purpose. The accuracy of spectral 

estimation with this system and each estimation technique is evaluated and the 

system’s performance is presented.   

 

Introduction 

In this paper, the analysis methods used for developing imaging systems estimating 

the spectral reflectance are considered. The estimation of the spectral reflectance 

determines a performance of a high quality color imaging system which is required in 

digital archives, network museums, e-commerce and telemedicine.1 Especially the 

design of a system for accurate digital archiving of fine art paintings has awakened 
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increasing interest. In such a system the digital image is easily examined by using a 

broadband network. The visitors of museums, art experts and artists would be able 

appreciate a variety of paintings at any viewing site wherever those paintings are 

located. In addition, archiving the current condition of a painting with high accuracy 

in digital form is important to preserve it for the future.  Several research groups 

worldwide have been working on these problems.2,3,4,5,6,7,8,9,10,11,12,13,14 

 

Conventional color imaging systems have a limitation that is a dependence of images 

on the illuminant and characteristics of the imaging system. The imaging systems 

based on spectral reflectance, unlike the conventional systems, are device-

independent and capable of reproducing the image of the scene in any illumination 

conditions. Also, these systems can incorporate the color appearance characteristics of 

the human visual system. Owing to the fact that spectral characteristics are smoothed, 

the high-dimensional spectral reflectance is accurately represented by a small number 

of channel images.15,16,17  Therefore, the task of spectral estimation includes statistical 

analysis of the reflectance spectra and minimization of the estimation error. The 

choice of error measures is a general topic of broader interest and sometimes contrary 

in impact. In the archival, ramifications for optimizing more for RMSE versus color 

difference depend on applications. For example, spectral optimization may better 

enable the identification of colorants used while color difference optimization may 

yield superior visual reproductions.    

 

The traditional techniques used for the estimation involve matrix-vector computation 

and usually assume a linear model of the data. Although the approach based on linear 

algebra and a nonlinear data model is proposed in the literature,4 machine learning 
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techniques seem appealing. They estimate spectra of the scene, incorporate the data 

nonlinearity and involve the training and prediction procedures. Therefore, the neural 

networks based methods for spectral reconstruction are proposed by Ribes et al.18 The 

tested methods are superior to the pseudo-inverse based estimation method with a 

quantization noise. Without noise the traditional methods predict better than the 

neural network because of the highly linear relationship between spectral sets used for 

training and prediction. To provide color constancy a Bayesian approach of the 

estimation method is proposed by Brainard and Freeman.19 Since the Bayesian 

approach is computationally demanding, the submanifold method for spectral 

reflectance estimation that is an intermediate solution between the Bayesian approach 

and linear estimation methods is described by DiCarlo and Wandell.20 The method 

extends the linear methods and introduces the additional term incorporating the 

nonlinearity of the data. The method uses a piece-wise linear way to represent the 

nonlinear data structure and reduces the error value 12% in comparison with a linear 

method. It is important that the method particularly reduces large linear errors. The 

limitation of the method is that it needs a large training set and is insufficient when 

the data structure is a one-to-many mapping. The properties of the methods 

considered in this paper are quite close to the submanifold approach20 and one of the  

learning algorithms based on Wiener estimation also gives a piece-wise linear 

solution.  

 

Recently, many advanced machine learning techniques using neural networks and 

support vector machines have been introduced and combined in the libraries that are 

convenient for the purpose. For example, building the estimation methods using the 

ready-made machine learning algorithms one can get theoretically founded algorithms, 
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a unified workflow for a current and future study, and a rich set of methods that 

provide flexibility for application-oriented research. In this paper, the neural networks 

algorithms from the Netlab library21, 22 will be used. They include regression, 

clustering and pattern recognition methods. Many of these methods are density 

models based on a likelihood that is important for recognition and convenient for 

comparison with other methods.  

 

In this study, we statistically analyze the reflectance spectra of color-patch sets of oil 

and watercolor paintings without noise characteristics, develop three machine-

learning based methods and compare them with three traditional methods with a 

synthetic data set and the real color-patch sets, as well. The traditional methods are 

linear estimators based on low-dimensional principal component analysis (PCA) 

approximation and Wiener estimation, and a nonlinear estimator based on multiple 

regression approximation. The machine learning methods extend the traditional 

methods for estimating a nonlinear data structure. They include two nonlinear 

methods based on nonlinear principal component analysis and regression analysis and 

the method using piece-wise linear Wiener estimation. The method utilizing nonlinear 

PCA and the method exploiting piece-wise linear Wiener estimation are novel 

methods. To develop an imaging system, two measures are used for estimation 

accuracy: spectral color difference (RMSE) and colorimetric color difference (CIE 

∆E94). The former is better for archiving the spectral reflectance and the latter is better 

for evaluating the appearance of the art paintings under a specific illumination to 

human observers. 
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The paper is arranged as follows: In the following section, we formulate the 

generalized reconstruction of spectral reflectance from a multichannel image in 

imaging systems with a reduced number of channels. Next, we describe three 

traditional methods and three machine learning methods. Then we present the results 

of the statistical analysis of the reflectance spectra of the color patches. Later on, an 

experiment with synthetic data and the reflectance spectra of the color patches is 

described. Finally, the experimental results are discussed and concluding remarks are 

presented. 

 

Formulation of the Spectral Reflection Estimation 

Fig. 1 shows the image acquisition system. The system consists of the single chip high 

quality CCD camera and the rotating color wheel comprising several color filters. The 

response v  at position ),( yx  of the CCD camera with the thi color filter is expressed 

as follows3:  

miyxndyxrSEtyxv iii ,,1),,(),,()()()(),( K=+= ∫ λλλλλ  ,   (1)                                   

where )(λit , )(λE , )(λS  and ),,( λyxr  are the spectral transmittance of the thi  filter, 

the spectral radiance of the illuminant,  the spectral sensitivity of the camera, and the 

spectral reflectance of a painting, respectively. ),( yxni  denotes additive noise in the 

thi channel image and m  denotes the total number of channels. 
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Fig. 1. The image acquisition system. 

For mathematical convenience, each spectral characteristic with l  wavelengths is 

expressed as a vector or a matrix. Using vector-matrix notation, we can express Eq.  

(1) as follows: 

),,(),(),( yxyxyx T nrESTv +=   (2) 

 

where T  denotes a transposition, v   is an 1×m  column vector representing the 

camera response, r  is an 1×l  column vector representing the spectral reflectance of 

the painting, |,,,| 21 mtttT K=  is an ml ×  matrix in which each column it represents 

the transmittance of the thi  filter, and E , S  are the ll ×  matrices that correspond to 

the spectral radiance of the illuminant and the spectral sensitivity of the CCD camera, 

respectively. 

 

Further for the sake of simplicity, ),( yx  from v , r  and n  are omitted. Eq. (2) is 

rewritten as an overall, linear system matrix ESTF T= with lm× elements: 

.nFrv +=          (3) 
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The response of the spectral CCD camera v  without a noise term is as follows: 

Frv = .         (4)      

We will call the space spanned by r  a spectral space and the space spanned by v  a 

sensor space or subspace. The estimation of reflectance spectra is obtained as follows: 

Gvr =ˆ ,        (5) 

where G  is a matrix depending on the estimation method used. In the next sections, 

six estimation methods are considered.   

 

Traditional Estimation Techniques 

Three approaches are usually used for spectral sensor design. The estimation 

techniques of reflectance spectra include: the method based on PCA (low-dimensional 

approximation) (PCE), the method based on Wiener estimation (WE) and the method 

using multiple regression approximation (MRE).4 

 

The Method Based on PCA 

Using spectral reflectance of the training set r a covariance matrix is computed as 

follows: 

)))())(((( TEEE rrrrC −−= ,     (6) 

where ()E  is an expectation operator. 

An eigendecompisition of the covariance matrix C  determines the matrix 

|,,,| 21 kbbb K=B , the columns of which are k  eigenvectors corresponding to the first 

k largest eigenvalues. The spectral reflectance is approximated as follows: 

Bwr ≅ ,               (7) 

where w  is a vector of PCs, T
kwww |,,,| 21 K=w  and mk ≤ .  
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The spectral camera response given by Eq. 4 can be presented by another expression 

as follows17:     

FBwv = .           (8) 

The principal components (PCs) are determined as follows:     

vFBw 1)( −= .      (9)    

Using Eq. 7 and Eq. 9 the estimation matrix G is as follows:     

1)( −= FBBG .      (10) 

The estimate of the spectral reflectance of the painting is as follows: 

vFBBGvr 1)(ˆ −== ,     (11) 

where the data is centered by )(Frvv E−←  and ←  means that the expression on 

the right is calculated and replaces the expression on the left. Finally, the mean value 

is added as follows: 

)(ˆˆ rrr E+= .      (12) 

Better accuracy of estimation can be obtained with Wiener estimation, which is 

considered next. 

 

The Method Using Wiener Estimation 

The Wiener estimation method minimizes the overall average of the square error 

between the original and estimated spectral reflectance.3 For this method, the 

correlation matrices rrR of painting spectra and noise nnR  are first computed, and 

consequently, the estimation matrix is the following3: 

1)( −+= nn
T

rr
T

rr RFFRFRG .       (13) 

The estimate is as follows:       

vRFFRFRGvr 1)(ˆ −+== nn
T

rr
T

rr .      (14) 
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If noise is not considered, the estimation matrix is as follows3: 

1)( −= T
rr

T
rr FFRFRG .         (15) 

And the estimate is as follows:       

vFFRFRGvr 1)(ˆ −== T
rr

T
rr .            (16) 

In this study, the Wiener estimation without consideration to noise is used. The 

Wiener estimation gives good accuracy for linear data. If the data is nonlinear, the 

technique based on multiple regression analysis is used. 

 

The Method Using Multiple Regression Analysis 

In the case of nonlinear data, multiple regression analysis gives better results than 

Wiener estimation.4  

   

In the MRE method, the extended data matrix V of painting spectra is first defined 

through the data components and their extended set of higher-order terms as follows4: 

|,,,,,,| 21111 KKK termsorderhighervvvvvv m −××=V ,    (17)  

where ×  denotes element-wise multiplication. 

Then the estimation matrix is given as follows: 

1)( −= TT VVRVG ,        (18)   

where R is a matrix, the columns of which are presented by n spectral samples given 

by 

nrrrR ,,, 21 K= ,       (19) 

According to the literature4, the estimation matrix G used in MRE is equal to the 

noiseless variant of the Wiener estimation matrix. 

Finally, 
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VVVRVGVr 1)(ˆ −== TT .        (20)              

Owing to the fact that new advanced machine learning algorithms are especially 

relevant for working with a nonlinear structure of data, the machine learning 

techniques are next discussed for spectral estimation. 

 

Machine Learning Estimation Techniques 

Drawing analogy with the traditional estimation methods, three machine learning 

techniques are proposed. They include the method based on regressive (nonlinear) 

PCA (RPCE), the method based on piece-wise linear Wiener estimation (PLWE) and 

the method using regression analysis (RE). Eq.1 – Eq.5 are valid for all machine 

learning methods. 

 

The Method Based on Regressive PCA 

The spectral camera response is computed in the following way:     

),( fθwFBfv = ,      (21) 

where ()f  is a nonlinear vector-valued mapping function and fθ  is a parametric 

vector.  

Then, PCs are defined by the following equation  

),)(( 1
hθvFBhw −= ,      (22) 

where ()h is an inverse function,  1()() −= fh , hθ  is a parametric vector and 

)(Frvv E−← . 

The mapping function ()h  and parametric vector hθ  are computed using a machine 

learning algorithm for regression.21 In consequence, the spectral estimate of the 

painting is as follows: 
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),)((ˆ 1
hθvFBBhr −= .     (23) 

Finally, the mean value is added as follows: 

)(ˆˆ rrr E+← .              (24) 

In practice, this method involves a low-dimensional subspace and a higher-

dimensional subspace including the low-dimensional subspace. For the low-

dimensional subspace, where T
k

k www |,,,| 21
)( K=w , the mapping is as follows:   

vFBθvFBhw 11)( )(),)(( −− == h
k ,    (25) 

where )(FrFrv E−← . 

For the higher-dimensional subspace, where  

,|,,,,,,||,| 121
):1()()( T

pkk
Tpkkp wwwww KK +

+ == www    (26) 

the mapping is done for the higher-order (or weak) PCs as follows:  

).,(),)(( )(1):1( θwhθvFBhw k
h

pk == −+         (27) 

Thus the method uses the low-order real PCs and the higher-order approximated PCs. 

 

The Method Using Piece-Wise Linear Wiener Estimation 

In this section, the other machine learning algorithm for piece-wise linear Wiener 

estimation is discussed. The main idea of the method is to separate the data structure 

into parts which are suitable for linear approximation and each part is then estimated 

by using the linear Wiener estimation method. 

 

For data separation, the clustering algorithm is first required. The data is divided into 

several clusters iv  using the Gaussian mixture model (GMM)21 in a sensor space 

where i  is an index of the cluster. Then for the data of each cluster Wiener estimation 

is utilized. Using the labels of the data it is easy to compute the cluster covariance 
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matrix in the spectral domain needed for estimation.  When the thi cluster covariance 

matrix iC of painting spectra is known, the spectral estimate for the thi cluster is as 

follows: 

i
T

i
T

iiii vFFCFCvGr 1)(ˆ −== ,        (28) 

where )( iii E Frvv −← .  

Finally, the mean value is added as follows: 

)(ˆˆ iii E rrr +← .               (29) 

The estimation procedure is sequentially repeated for all clusters. 

 

The Method Using Regression Analysis 

The estimation method based on the regression analysis is similar to the multiple 

regression approach. The difference is that nonlinear mapping is used instead of linear 

mapping and the higher-order terms are not synthesized. For regression analysis based 

on machine learning the estimate is given as follows: 

),(ˆ θvgr = ,         (30) 

where g  is a nonlinear vector-valued mapping function and θ  is a vector of 

parameters. 

Then, an thi  entry is defined as follows: 

),(ˆ θvii gr = .        (31) 

There are several regression algorithms21 but only the regression method based on the 

radial basis function (RBF) is used in this study for all methods.  The reason is that 

the RBF method is relatively fast and performs well. 
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Additional Techniques 

All machine learning algorithms may need the additional techniques that help in 

parameter adjustment.  

 

The regressive PCA method used in this study is a technique which combines the 

PCA and nonlinear regression methods.23 In general, the ways utilized in both 

approaches to detect the underlying dimensionality of the data can be combined. For 

PCA, this is an analysis of the residual energy depending on a number of PCs. 

Furthermore, for regression methods this is Automatic Relevance Determination 

(ARD). 21 The ARD method defines the statistical dependence between the PCs, and 

in the case of the dependency between the tested components and a target component 

the tested components are relevant to approximate the target component. However, 

this technique will not be used in this study. For the regressive PCA the number of 

real PCs will be given and a number of approximated PCs will be used as a free 

parameter. 

 

The piece-wise linear Wiener estimation approach needs to determine the number of 

linear components for using a clustering procedure. This is done based on the model 

selection of the mixed distribution.24 After that the Gaussian mixture model21 with a 

given number of clusters is used to extract linear components. 

 

Statistical Properties of Reflectance Spectra 

For statistical analysis of the spectral reflectance of paintings we use five sets of color 

patches of oil or watercolor paint as follows: set A, 336 patches of paint (reflectance 

of paint); set B, 60 patches of paint (Turner acryl gouache); set C, 60 patches of paint 
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(Turner golden acrylics); set D, 91 patches of paint (Kusakabe oil paint) and set E, 18 

patches of  paint (Kusakabe haiban). All sets were extracted from the standard object 

color spectral database constructed by the Spectral Characteristic Database 

Construction Working Group.25 These sets have a spectral range of 400-700 nm and 

samples are evenly taken at 10 nm. 

 

The set A is used for training the algorithms and the sets B-E are used for prediction 

of the spectral reflectance. Therefore, linear and nonlinear principal component 

analysis was carried out only for the set A.  According to a previous publication3, five 

PCs of linear PCA are good enough for accurate spectral estimation. Hence the 

spectral set A and its first five PCs that have a residual energy of 0.16% are analyzed 

and shown in Fig. 2 and Fig. 3, respectively.  

 

 

    

 

 

 

 

 

 

 

 

Fig. 2. Reflectance spectra of the set A of paint patches. 
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Fig. 3. First five principal components of the set A of paint patches. 

If regressive PCA is applied to utilize the five real PCs and several approximated PCs 

of the set A, the average RMSE value of the spectral approximation is reduced (Fig. 

4). This illustrates the fact that there is a way to improve the degree of accuracy for 

representing spectra by incorporating the nonlinearity of the data.    

  

Experiment 

Synthetic Data 

In this section, the nonlinear dataset is first synthesized and then all methods for 

spectral estimation are tested with a synthetic set. It is assumed that one channel 

response is used while the data simulating spectra is two-dimensional. The purpose of 

the test is to show the feasibility of the method to work with data which has a 

nonlinear structure. 
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Fig. 4.  The average RMSE of spectral approximation for the set A using regressive 

PCA. The first five components are given by PCA and the components 6-10 are 

approximated by regressive PCA. 

 

Thus two data components are generated for the test. The first component 1x is 

uniformly distributed in the range -0.2 – 0.5 and another one is 4
12 )5.0( −= ii xx . 

Finally, a zero-mean Gaussian noise with the standard deviation 0.007 was added to 

the generated components. The estimation result of the synthetic data is presented in 

Fig. 5. A vector F , a vector 1b , that is a first PCA eigenvector from B  and the curve 

corresponding to an underlying subspace are shown in Fig. 5. The original 

(synthesized) data and the estimates for each method are shown by gray dots in Fig. 5.  

 

Although the WE method is superior to the PCE based method, the PCE and WE 

methods give poor estimates for the data. The MRE, RPCE and PLWE methods are 

relatively good for estimation. The RE method gives the best result from among these 

methods. 
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Fig. 5. The estimation results for the synthetic data and different estimation methods. 

 

Real Data 

An experiment was conducted with sets A-E described above. The set A is used for 

training while the other sets are used for prediction. The spectral transmittance 

characteristics of the separation filters used in a CCD camera are given in Fig. 6. The 

spectral sensitivity of a CCD area sensor (Phase One 3072 (horizontal pixels)×2060 

(vertical pixels), 14 bits) is presented in Fig. 7. The illumination source is D65. 
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Fig. 6. The spectral transmittance characteristics of the filters. 

 

 

 

 

 

 

Fig. 7. The spectral sensitivity of the camera. 

 

The parameters used in the test are the following: The five PCs are exploited for PCE 

and RPCE. In addition, the RPCE approach uses the PCs approximating the real sixth, 

seventh, eighth and ninth PCs. For the PLWE method a mixture of Gaussian 

components is used for clustering where the number of components is defined in a test 

based on the model selection of the mixed distribution. The MRE technique uses the 

terms beginning with the first-order to the second-order ones. For the RE method, 

regression is based on the radial basis function using the Gaussian function. 20 

neurons and 7 iterations are used in this case. 
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A variational Bayesian model selection method for the mixture distribution24 in the 

sensor space defines the number of components for the PLWE method. For this, the 

program is rerun ten times. The results are presented in Table 1 where the first row 

shows the test number and the second row shows the number of components 

determined by the algorithm. Fig. 8 illustrates the variational likelihood bound over 

the model selection of 336 painting spectra (set A). Initially, the model has ten 

Gaussians. The vertical lines show the removal of the components from the model. 

Finally, two components are selected. 

 

Table 1. The number of components for piece-wise linear Wiener estimation 

Test number  1 2 3 4 5 6 7 8 9 10 

Number of components 2 2 1 1 2 2 2 2 2 2 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The variational likelihood bound over the model selection of 336 painting 

spectra (set A).  
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If the estimation values of spectral reflectance are less than zero or greater than one 

then they are equalized to zero or one, respectively 

 

In Table 2 and Table 3, the average and maximum RMSE values for each set are 

given for the traditional methods and methods based on machine learning algorithms.  

 

Table 2. The average and maximum (in parentheses) RMSE values for PCE, WE 

and MRE 

 PCE WE MRE 

Set A 0.0516 (0.2458) 0.0155 (0.1633) 0.0123 (0.1159) 

Set B 0.0836 (0.3952) 0.0346 (0.1712) 0.0324 (0.1732) 

Set C 0.0889 (0.3469) 0.0466 (0.2478) 0.0397 (0.2158) 

Set D 0.0917 (0.4083) 0.0403 (0.2304) 0.0352 (0.2075) 

Set E 0.0917 (0.3136) 0.0330 (0.1416)  0.0281 (0.1199) 

 

Table 3. The average and maximum (in parentheses) RMSE values for RPCE, 

PLWE and RE 

 RPCE PLWE RE 

Set A 0.0512 (0.2447) 0.0142 (0.1522) 0.0123 (0.1047) 

Set B 0.0834 (0.3928) 0.0343 (0.1683) 0.0315 (0.1731) 

Set C 0.0887 (0.3452) 0.0450 (0.2350) 0.0379 (0.2010) 

Set D 0.0912 (0.4066) 0.0376 (0.2209) 0.0349 (0.1992) 

Set E 0.0910 (0.3122) 0.0339 (0.1185) 0.0275 (0.1062) 
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In Table 4 and Table 5, the average and maximum CIE ∆E94 values for each set are 

given for the traditional methods and methods based on machine learning algorithms. 

Table 4. The average and maximum (in parentheses) CIE ∆E94 values for PCE, 

WE and MRE 

 PCE WE MRE 

Set A 0.72 (13.65) 0.17 (4.03) 0.15 (1.68) 

Set B 2.96 (21.00) 0.58 (2.84) 0.54 (2.13) 

Set C 2.36 (15.42) 0.80 (4.08) 0.59 (4.21) 

Set D 2.43 (19.24) 0.71 (5.18) 0.55 (3.37) 

Set E 1.32 (3.57) 0.37 (2.34) 0.31 (1.18) 

 

Table 5. The average and maximum (in parentheses) CIE ∆E94 values for RPCE, 

PLWE and RE 

 RPCE PLWE RE 

Set A 0.81 (14.89) 0.16 (3.46) 0.17 (3.16) 

Set B 3.34 (23.15) 0.67 (2.65) 0.59 (2.65) 

Set C 2.51 (14.90) 1.033 (8.47) 0.82 (3.47) 

Set D 2.71 (20.86) 0.8623 (8.19) 0.74 (2.92) 

Set E 1.89 (5.14) 0.57 (2.00) 0.71 (2.79) 

 

In general, the results presented in Table 2 - Table 5 demonstrate that for the RMSE 

values the machine learning methods give slightly better results than their traditional 

opposite methods while the traditional methods have smaller CIE ∆E94 values. The 

exception is the RE method which has better prediction in comparison with the other 

methods for the maximal error of the color difference. 
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The methods are also tested using computational time. The CPU time in seconds for 

the set A is presented in Table 6. For the algorithms, the CPU time is given separately 

for training (upper row) and prediction (lower row).  In Table 6, zero values are given 

for the CPU time, which is very small (this corresponds to several matrix-vector 

multiplications). Matlab 6.5, the Intel Pentium III Processor, 1066 MHz and 248 MB 

of RAM are used in the test. The test shows that the traditional methods are faster 

than the machine learning methods. However, the prediction time for the machine 

learning methods is relatively short. 

Table 6. The CPU time in seconds 

PCE WE MRE RPCE PLWE RE 

0.04 

0.0 

0.0 

0.0 

0.01 

0.01 

0.35 

0.03 

0.38 

0.22 

6.49 

0.18 

 

To see whether any nonlinearity is presented in the estimated spectra we measure the 

average RMSE value after estimation of spectral reflectance using PCA and RPCA. 

The results are shown in Table 7 for PCA with the five PCs (upper number) and for 

RPCA with the five real PCs and five approximated (from six to ten) PCs (lower 

number). Then, the ratio between these two RMSE values is determined and presented 

in Table 8.  

 

From Table 8, one can see that the RE and RPCE methods have ratio values close to 

the original data set. The MRE and PLWE methods give results which are farther 

from the original data set. The PCE and WE ratio values are the most different from 

the original data in comparison with the other methods.   
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Table 7. The average RMSE value after spectral estimation for PCA with the five 

PCs (upper number) and for RPCA with the five real components and five 

approximated components (lower number). 

Set A PCE WE MRE RPCE PLWE RE 

0.00941 

0.00772 

0.00441 

0.00422 

0.00043 

0.00048 

0.00728 

0.00539 

0.00614 

0.00479 

0.00453 

0.00423 

0.00807 

0.00626 

 

Table 8. The ratio between the RMSE values for PCA and RPCA  

Set A PCE WE MRE RPCE PLWE RE 

1.21 1.04 0.88 1.35 1.28 1.07 1.29 

 

From among the traditional methods the method based on MRE produces the best 

result. The method has small RMSE and CIE ∆E94 values in the training set and sets 

used for prediction. While the RMSE values for all machine learning methods are 

slightly better in comparison with the traditional methods, the CIE ∆E94 values of the 

methods based on machine learning except the RE method are higher. The overall 

means of average color differences for the traditional methods are 1.95 (PCE), 0.52 

(WE) and 0.42 (MRE) and for the learning methods 2.25 (RPCE), 0.65 (PLWE) and 

0.6 (RE). Thus, the color differences using the machine learning methods are smaller 

than the differences between the traditional methods. The RE method incorporates 

nonlinearity of data that is clearly seen from Table 8. The generalization of the data 

given by the RE method is very good in comparison with the other methods.  This 

follows from predicting the maximum CIE ∆E94 values. However, given the 

processing and execution times the MRE method gives a better average and in two out 

of five cases smaller maximum color difference errors than the RE method. Although 
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the traditional methods are less time consuming than the machine learning methods, 

the prediction time for the learning methods is short enough.  

 

In general, the traditional methods look more desirable than the learning methods.  

This is contrary to the initial result shown in Fig. 5 where the learning methods are 

superior to the traditional methods. This can be explained as follows. In this study the 

sensor space (subspace) dimensionality is defined by the five given filters. Although 

the subspace is not optimal (close to optimal) its dimensionality is rather high. 

Recently, it was shown that for reflectance spectra the dimensionality of the nonlinear 

subspace is approximately three.26 Thus, one can expect that for spectral imaging 

systems having the low dimensional sensor space or fewer channels the learning 

based methods are more efficient. We will consider this problem in a future study. 

 

Conclusions 

We have compared the methods for estimating the spectral reflectance of art paintings 

for the development of spectral color imaging systems. Three traditional methods and 

three methods based on machine learning for spectral reflectance estimation of paint 

were utilized. The traditional methods include two linear methods – the method based 

on PCA and the method based on Wiener estimation – and one method using multiple 

regression analysis. We introduced two novel machine learning methods utilizing 

regressive PCA and piece-wise linear Wiener estimation. Thus, the machine learning 

methods include two methods working with a global nonlinear data structure – the 

method based on regressive PCA and the method based on regression analysis – and 

the method using piece-wise linear Wiener estimation. Similarly to the submanifold 

method20, the learning methods used are between the linear and Bayesian approaches 
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and the methods working with nonlinear data have a limitation. They work only with 

a data structure with a one-to-one mapping. Finally, we synthesized a spectral color 

imaging system implementing the different estimation methods and demonstrated the 

possibility for accurately estimating the reflectance spectra using the presented 

techniques.  
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