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The spatial distributions of melanin and hemoglobin in human skin are

separated by independent component analysis of skin color image. The

analysis is based on the skin color model with assumptions; (1) spatial

variation of color in the skin is caused by two pigments; melanin and

hemoglobin, (2) their quantities are mutually independent spatially,

(3) the linearity holds among the quantities and observed color signals in

the optical density domain. The results of the separation agree well with

the physiological knowledge. The separated components are synthesized to

simulate the various facial color images by changing the quantities of the

separated two pigments.
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1. INTRODUCTION

Skin color reproduction may be considered the most important

problem for color reproduction of color film and color television

systems[Hunt, 1995 #14]. With the recent progress of various imaging

systems[Imai, 1996 #15; Yokoyama, 1997 #16; Hanarahan, 1993 #17; Yamaguchi,

1997 #9] such as multi-media, computer graphic and telemedicine systems,

the skin color becomes increasingly important for communication, image

reproduction on hardcopy and softcopy, medical diagnosis, cosmetic

development and so on.

Human skin is the turbid media with multi-layered structure[Gemert,

1989 #12; Anderson, 1981 #13]. Various pigments such as melanin and

hemoglobin are contained in the media. The slight changes of the structure

and pigment construction produce rich skin color variation[Edwards, 1939

#18]. Therefore, it is necessary to analyze the skin color based on the

structure and pigment construction in reproducing and diagnosing the

various skin colors.

In this paper, the spatial distributions of melanin and hemoglobin in

skin are separated by independent component analysis of skin color image.

The independent component analysis(ICA) is a technique that extracts the

original signals from mixtures of many independent sources without a

priori information on the sources and the process of the mixture. The

ICA has been applied to the various problems such as array processing,

communication, medical signal processing, and speech processing[Karhunen,

1997 #10]. In the field of color image processing, Inoue et al.[Inoue, 1996

#28] proposed a technique to separate each pigment from compound color

images. Their research is reviewed in Section 2 in this paper. However,

they could not obtain any practical result, since they assumed the linearity

among the quantities of pigments and observed color signals in the
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intensity domain. In the intensity domain, generally, this linearity will

not hold in practical applications. We improve their technique by

processing the color signals in the density domain, and apply it to the skin

color image. Moreover, we apply the result of the analysis to the

separation and synthesis of a facial color image.

In Section 2, we review the independent component analysis for

application to the color image separation, which is proposed in Ref. [Inoue,

1996 #28] In Section 3, the skin color is modeled based on the two

pigments; melanin and hemoglobin in optical density domain. The result of

the independent component analysis for skin color images is shown in

Section 4. In Section 5, separated and synthesized facial color images are

shown.

2. INDEPENDENT COMPONENT ANALYSIS

The ICA is a technique that extracts the original signals from

mixtures of many independent sources without a priori information on the

sources and the process of the mixture. To apply the ICA to color image

separation, Inoue et al. considered that quantities of the pigments which

construct the color are the original signals from independent sources,

observed color signals are mixtures, pure color signals of the pigments

indicate the process of the mixture of quantities[Inoue, 1996 #28] In this

section, this technique is described based on the Ref. [Inoue, 1996 #28]

Simplifying the description, we assume that the media is

constructed by two pigments and that it is captured by an imaging system

with two color channels. This simplification does not prevent the

generalization of the problem except when the number of pigments is

larger than the number of channels. This is discussed later in this section.

Let l ,mx (1) and l ,mx (2) denote the quantity of the two pigments on

the coordinate (l,m) in the digital color image, a(1) and a(2) denote
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pure color vectors of the two pigments per unit quantity, respectively.

Inoue at al. assumed a(1) and a(2) are different from each other. They

also assumed the compound color vector l ,me on the image coordinate

(l,m) can be calculated by the linear combination of pure color vectors with

the quantities of l ,mx (1) and l ,mx (2) as

l ,me = l ,mx (1)a(1) + l ,mx (2)a(2) . (1)

Each element of the color vector indicates the pixel value of each channel.

Denote now by A = a(1), a(2)[ ] the constant 2 x 2 mixing matrix whose

column vectors are pure color vectors, and by l ,mx = t
l ,mx (1), l ,mx (2)[ ] the

quantity vector on the image coordinate (l,m). We can write the signal

model in vector and matrix form as follows:

l , me = A l ,mx . (2)

Inoue et al. also assumed that the elements l ,mx (1) and l ,mx (2) of the

quantity vector are mutually independent for the image coordinate (l,m).

Figures 1(a) and (b) show the process of the mixture and an example of

probability density distribution of l ,mx (1) and l ,mx (2) that are mutually

independent. Figure 1(c) shows the probability density distribution of

l , me (1) and l , me (2) in the image, which are elements of compound color

vector l , me . It should be noted that the observed color signals l , me (1) and

l , me (2) are not mutually independent. In Fig. 1(c), pure color vectors a(1)

and a(2) are also shown to illustrate the relationship among the

parameters.

By applying the ICA to the compound color vectors in the image, the

relative quantity and pure color vector of each pigment are extracted

without a priori information on the quantity and color vector under the
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assumption that quantities of pigments are mutually independent for the

image coordinate. Let us define the following equation using the separating

matrix H and separated vector l ,ms as shown in Fig. 1(a).

l ,ms = H l ,me , (3)

H = h(1),h(2)[ ],

l ,ms = t
l , ms (1), l , ms (2)[ ]

where h(1) and h(2) are separating vectors. By finding the

appropriate separating matrix H, we can extract the mutually independent

signals l ,ms (1) and l ,ms (2) from the compound color vectors in the image.

Many methods are proposed to find the separating matrix H(for example

[Burel, 1992 #6; Hyvärinen, 1997 #4; Jutten, 1991 #1; Karhunen, 1997 #5; Yang, 1997

#3]), such as using learning ability of artificial neural network[Karhunen,

1997 #5], optimization techniques based on fixed point method[Hyvärinen,

1997 #4].

The extracted independent signals l ,ms (1) and l ,ms (2) may

correspond to l ,mx (2) and l ,mx (1) , respectively, and it is impossible to

determine the absolute quantities l ,mx (1) and l ,mx (2) without an

additional assumption. Therefore the extracted independent vector l ,ms

is given by

l ,ms = RΛ l , mx , (4)

where R is the permutation matrix that may substitute the elements of the

vector each other, Λ  is the diagonal matrix to relate the absolute
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quantities to relative qualities. Substituting Eqs. (2) and (3) into Eq. (4)

gives

HA l ,mx = RΛ l , mx . (5)

Taking Eq. (5) in the arbitrary quantity vector, the matrix HA should be

equal to the matrix RΣ, and the mixing matrix A is calculated by using the

inverse matrix of H as follows:

A = -1H RΛ . (6) 

 

Note that what we can obtain by the ICA are relative quantities and

directions of compound color vectors. In our application of color image

separation and synthesis, however, the absolute values are not required.

If the number of pigments is larger than the number of channels, it

is impossible to extract the independent components caused by reduction

of the signals. On the other hand, if the number of pigments is smaller than

the number of channels, it is possible to make the number of channels

equal to the number of pigments by using the principal component

analysis[Karhunen, 1997 #5]. This technique is also used in our analysis.

3. SKIN COLOR MODEL

Schematic model of human skin is shown in Fig. 2 with plane parallel

epidermal and dermal layers. The epidermal and dermal layers are the

turbid media. Various pigments such as melanin, hemoglobin, bilirubin,

and β-carotene are contained in the layers, especially melanin and

hemoglobin are dominantly contained in the epidermal and dermal layer,

respectively.
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Figure 3(a) shows skin color image with 64 x 64 pixels used for the

ICA. The image is extracted from the forehead of the facial image with 300

x 450 pixels taken by HDTV camera(Nikon HQ1500C) with 1920 x

1035 pixels. The facial image is shown in Fig. 3(b), the extracted area is

surrounded by a white square. The subject was not wearing makeup and

lipstick. Each pixel of these color images has three channels; red, green

and blue. Let l , mr , l ,mg , l , mb be the pixel values in red, green and blue

channels of the skin color image on the image coordinate (l,m),

respectively.

Analyzing the above skin color, we made four assumptions on skin

color. First, the Lambert-Beer law or modified Lambert-Beer law[Hiraoka,

1993 #21] holds in the reflected light among the quantities and observed

color signals. Second, spectral distribution of the skin is not abrupt in the

sensitive spectral range of each channel in the imaging system. Third, the

spatial variations of color in the skin are caused by two pigments; melanin

and hemoglobin. Fourth, these quantities are mutually independent

spatially.

The first assumption assures the linearity among the observed color

signals and pure color signals of pigments in the spectral density domain.

In the optical density domain of three channels; − log( l ,mr ), − log( l ,mg )

and − log( l ,mb ) , the linearity is assured by including the second

assumption. This is because that the signal value of the each channel is

obtained by the integration of spectral intensity with respect to wavelength

in the sensitive spectral range of each channel in the imaging system, and

the integration can be approximated as a product of the intensity at a

wavelength by a constant, if the spectral distribution of the skin is

approximated as flat in the sensitive spectral range. On the basis of the

linearity and the third assumption, the color in skin image is modeled as

Fig. 4 in the optical density domain of three channels. It is seen that the
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three densities of skin color are distributed on the two dimensional plane

spanned by pure color vectors of melanin and hemoglobin. Denote by

l,mc color density vector on image coordinate (l,m) as

l,mc =
t

− log( l ,mr ),− log( l ,mg ),− log( l ,mb )[ ] , (7)

where
t⋅[ ] represents transposition. According to the skin color model

shown in Fig. 4, the color density vector of skin can be expressed by

l, mc = l , mq (1)c(1) + l ,mq (2)c(2) + c(3) , (8)

where c(1) and c(2) are pure density vectors of hemoglobin and

melanin (or melanin and hemoglobin), l ,mq (1) and l ,mq (2) are relative

quantities of the pigments respectively, c(3) is spatially stationary vector

caused by other pigments and skin structure. The vectors c(1) and c(2)

are normalized as c(1) = c(2) = 1 , where ⋅ is the operation of

Euclidean norm. Equation (8) is written in vector and matrix form using

the pure color density matrix C = [c(1),c(2)] and quantity vector

l ,mq = t[ l ,mq (1), l , mq (2)] as

l, mc = C l ,mq + c(3) (9)

It is easily understood that the ICA described in Section 2 can be

applied in the two dimensional plane spanned by c(1) and c(2) to

estimate the quantity vector l ,mq from color density vectors l,mc .

Principal component analysis(PCA) is used to extract the two-dimensional

plane. Figure 5 shows the relationship between the number of principal

components used and cumulative contribution ratio. The values of three

channels can be adequately described by using the two principal

ergeformat ��� and � EMBacy of 99.3%. Let denote the first,

second and third principal component vectors as p(1), p(2) and p(3) ,
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third principal component vectors as p(1), p(2) and p(3) , respectively.

It is noted that p(1), p(2) will span the two dimensional space spanned

by c(1) and c(2) .

Here define the projection matrix tPP = [p(1), p(2)] t[p(1),p(2)]

onto the two dimensional space spanned by c(1) and c(2) . Based on the

projection, the color density vector l,mc can be divided into two

components as follows:

l, mc = P tP l ,mc + (I-P tP ) l , mc , (10)

where matrix I denotes an identity matrix. The first term indicates the

component in the two dimensional subspace spanned by c(1) and c(2)

or 1p and 2p . The second term indicates the component in the one

dimensional subspace which is spanned by 3p . Substituting Eq. (9) into

Eq. (10), it is shown in Eq. (11) that the second term is independent of the

quantities l ,mq .

l, mc = P tP C l , mq +c(3){ } + (I-P tP ) c(3). (11)

4. SKIN COLOR IMAGE SEPARATION

The skin color model proposed in Section 3 is used to extract the

unknown color density matrix C and unknown relative quantity vectors

l ,mq . The flowchart of the extraction is shown in Fig. 6 with the

computation in Section 3.

Let us define the score vector l ,mw in the first term of Eq. (11) as

l ,mw = tP C l , mq +c(3){ } (12)

Equation (12) is rewritten as



10

l ,mw = tP C l ,m′ q , (13)

where

l , m′ q l , m=q + −1( tP C ) tP c(3) . (14)

Making the task of ICA easier[Karhunen, 1997 #5], the elements in score

vector l ,mw were made zero mean by subtracting the mean vector w , and

made unit variance by multiplying the inverse square root of the 2 x 2

diagonal matrix D = diag[λ (1),λ (2)] , where λ (1) and λ (2) denote

the eigenvalues for the first and second principal components respectively.

The whitened vector denoted by l , me is written as

l , me = -1/2D ( tP C l , m′ q − w) . (15)

Equation (15) is rewritten as

l , me = -1/2D tP C l ,mx , (16)

where

l , ml , mx = ′ q − −1t(P C ) w . (17)

Here, we define the A = -1/2D tP C , then we get Eq. (18) that is as same as

Eq. (2).

l , me = A l ,mx (18)
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The whitened vector l , me is considered as the compound color vector in

Eq. (2) , and the vector l , mx in Eq. (18) as the quantity vector in Eq. (2).

The separation matrix H is obtained by the ICA for the normalized

vectors l , me , and the mixing matrix is calculated by Eq. (6). Substituting

the A = -1/2D tP C into the Eq. (6) and solving for the color matrix C, the

estimated matrix C̃ of pure color densities is calculated as,

C̃ = -1-1/2(D tP ) -1H RΛ . (19)

The diagonal matrix Λ was decided to normalize the matrix C̃ as

c(1) = c(2) = 1, permutation matrix R was an identity matrix in this

paper.

Each element of separation matrix H was obtained by minimizing

the Burel's independence evaluation value[Burel, 1992 #6] for the elements

of vector l ,ms . The independence evaluation value ranges from 0 to 1, and

if the value is 0, the signals are mutually independent. The minimization is

performed by quasi-Newton implementation using the MATLAB tool

box[Garce, 1992 #8]. Figures 7(a) and (b) show the distribution of

observed signals l , me (1) and l , me (2) , and resultant signals l ,ms (1) and

l ,ms (2) respectively. The independence evaluation value for the

observed signals and resultant signals were 0.2414 and 0.0081,

respectively. We can conclude that l ,ms (1) and l ,ms (2) are fairly

independent of each other from the independence evaluation value of

0.0081[Burel, 1992 #6], therefore melanin and hemoglobin were distributed

independently in the skin color image.

The quantity vector is estimated by using the estimated pure color

matrix C̃ . Replacing the color matrix C with the estimated matrix C̃ in

Eq. (9), and solving for quantity vector l ,mq , the estimated quantity vector

l ,mq̃ is given by
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l ,mq̃ = +

C̃ l ,mc − b , (20)

where
+

C̃ is the Moore-Penrose's generalized inverse matrix of C̃, and

b is defined by
+

C̃ c(3) . The vector c(3) is unknown, therefore, we

assumed that the smallest value of each element in l ,mq in skin image is

zero, then b is calculated by

b =
l ,m

min (
+

C̃ l ,mc ), (21)

where
l ,m

min (x) produces the smallest element of the vector x in the

image and gives them in vector form.

According to the above analysis, the color separation and synthesis

equation is written by

l ,m′ c = C̃ {K
+

C̃ l ,mc − b( )+ jb}+ j(I-P tP ) l ,mc , (22)

where l ,m′ c is the synthesized color, K is the diagonal matrix to change

the quantities of pigments l ,mq = +

C̃ l ,mc − b( ), j is the value to change

quantities of stationary color vector c(3) . We call the K and j

synthesis parameters.

Figures 8 (a) and (b) show the separated two independent

components; first and second independent components, respectively. We

set the synthesis parameters as K = diag[1,0] and j = 0 in Fig. 8(a),

K = diag[0,1] and j = 0 in Fig. 8(b). It is assumed that the first and

second independent components are caused by hemoglobin and melanin,

respectively, since the pimples are seen in the first independent component

and not seen in the second independent component.
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4. FACIAL COLOR IMAGE SEPARATION AND SYNTHESIS

The main variations of the facial color are caused by the quantity

variation of the hemoglobin and melanin. It is possible to simulate the

facial color variation by synthesizing the separated two components with

the increase or decrease of each separated quantity.

We applied the color separation and synthesis equation Eq. (22) to the

facial image shown in Fig. 3(b). The coefficients of the equation were

obtained by analyzing the skin color image shown in Fig. 3(a). Figures 9

(a) and (b) show separated two images corresponding to the first and

second independent components, respectively. We set the synthesis

parameters as K = diag[1,0] and j = 0 in Fig. 9(a), K = diag[0,1]

and j = 0 in Fig. 9(b). Note that there is a little melanin at the lip

region in Fig. 9(b). This result agrees well with the physiological

knowledge. However, the region of hair is mistakenly separated into the

region of hemoglobin. We considered that skin model does not hold in the

hair.

Figures 10(a), (b), (c), and (d) show simulated results of facial color

variation based on the independent component. We set the synthesis

parameters as K = diag[2,1] and j =1 in Fig. 10(a), K = diag[3,1]

and j =1 in Fig. 10(b), K = diag[1,2] and j =1 in Fig.10(c),

K = diag[1,3] and j =1 in Fig. 2(d). If the estimated quantity at a

certain point is smaller than the corresponding element of b in Eq.(22),

the parameters are set as K = diag[1,1] and j =1 to hold the image

quality in the regions of hair, background and so on. It is seen in Fig.

10(a) that the pimples are enhanced by the increase of the hemoglobin, and

in Fig. 10(b) the whole facial color becomes flushed, as if the lady is in the

high temperature room. It is seen in Figs 10(d) and (e) that the facial colors

become more brownish, as if the lady got a suntan. It is also seen that the

highlights were emphasized relatively in the synthesized image in Fig. 10.
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This is because we assumed that the smallest value of each quantity in skin

image is zero in Eq. (21). The highlights were caused by the geometry of

environmental illuminant in Fig. 2(b).

5. CONCLUSION AND DISCUSSION

The skin and facial color image were separated into two images by

independent component analysis in optical density domain of three color

channels. We believe that the images correspond to distributions of the

melanin and hemoglobin, respectively, because the result of separation

agreed well with the physiological knowledge. The separated

components were synthesized to simulate the various facial color images

by changing the quantities of the separated two pigments.

Many assumptions were made in the analysis; (1)linearity among the

quantities and observed color signals in the optical density domain,

(2)spatial color variation caused by only two pigments, (3)spatial

independence of the two pigments, (4) zero quantity in a certain point of

the skin image. From the results of PCA and ICA, we can conclude that

the linearity, the spatial color variation, and the spatial independence were

confirmed in our experiments. In applying this technique to various

parts of the body, however, it will be necessary to consider the violation of

these assumptions depending on the area of skin image, skin structure, skin

condition and so on. In addition to the above assumptions, we have

assumed implicitly that pure color vectors of pigments will not change

spatially. However, hemoglobin has two types of state; Oxy-

hemoglobin(HbO2) and Deoxy-hemoglobin(Hb). The spectral absorptions

are different from each other, and ratio between HbO2 and Hb will change

spatially in a large area of skin image or in the area of skin diseases[Dwyer,

1997 #20]. Applying this technique to such images, the ICA for the skin
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color images should be improved by using artificial neural network that is

adaptive to the fluctuation of the system.

The values of three color channels are dependent on the imaging

device. Therefore, it was impossible to discuss the separated colors directly

in this paper. The proposing techniques should be applied to calibrated

image or spectral reflectance image.

In the synthesis of facial color, the quantities of pigments are simply

changed doubled and tripled in this paper. Various image processing

techniques will give rich variations of facial color image, and knowledge

of physiological phenomenon will help the techniques to reproduce the

realistic variation of facial color.
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Figure Captions

Fig. 1 Mixture and separation of independent signals; (a) flow of the

signals, (b) an example of probability density distribution of

l ,mx (1)and l ,mx (2) , (c) l ,me (1) and l ,me (2) , and (d) l ,ms (1) and

l ,ms (2) .

Fig. 2 Schematic model of human skin with plane parallel epidermal and

dermal layers

Fig. 3 The analyzed color images; (a)skin color image with 64 x 64

pixels, (b)facial image color image with 1920 x 1035 pixels.

The skin color image is extracted from the forehead of the facial

image. The extracted area is surrounded by white square.

Fig. 4 Skin color model in the optical density domain of three channels

Fig. 5 Relationship between the number of principal components used

and cumulative contribution ratio in skin colors of three channels.

Fig. 6 Flowchart of the preprocessing and independent component

analysis for skin color image

Fig. 7 Distribution of (a) observed signals l ,me (1) , l ,me (2) , and (b)

separated signals l ,ms (1) , l ,ms (2) .

Fig. 8 Separated two independent components of the skin color image;

(a) first and (b) second independent components. The synthesis
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parameters are set as (a) K = diag[1,0] and j = 0 , (b)

K = diag[0,1] and j = 0 .

Fig. 9 Separated two images corresponding to (a) first and (b)second

independent components. Synthesis parameters are set as (a)

K = diag[1,0] and j = 0 in , (b) K = diag[0,1] and j = 0.

Fig. 10 Simulated images of facial color variation based on the

independent component. The synthesis parameters are set as (a)

K = diag[2,1] and j =1 , (b) K = diag[3,1] and j =1 , (c)

K = diag[1,2] and j =1, (d) K = diag[1,3] and j =1.


