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Abstract: In this paper, we propose an algorithm for estimating respiratory state using near-infrared facial video images. 
Estimation of respiratory state is an important indicator for early detection of respiratory diseases. In particular, there is a demand 
for monitoring respiratory state during the night. One method of monitoring respiratory state is to use contact-type sensors. 
However, this method requires the installation of many sensors and a visit to a hospital, which place a burden on patients. 
Therefore, we propose to acquire respiratory-induced features from near-infrared face video images and investigate their 
similarity to measurements obtained with a respirometer for non-contact monitoring of respiratory state in the dark. Respiratory-
induced features were obtained from pulse wave signals extracted from the face video images. The results showed correlations 
in several respiratory states. This study opens some perspectives in non-contact monitoring of respiratory states. 
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1 INTRODUCTION 

Respiration measurement is an important indicator for 
the early detection of respiratory diseases. Sleep apnea is one 
of the respiratory diseases that occur during sleep. Sleep 
apnea is a disease in which breathing stops or becomes 
shallow many times during sleep, causing hypoxia in the 
body [1]. This increases the occurrence of ischemic heart 
diseases such as hypertension, stroke, and myocardial 
infarction due to stress caused by hypoxia during sleep and 
sleepiness during the day. Apnea is defined as a condition in 
which breathing stops for 10 seconds or more, and oxygen 
saturation drops by 3%. SAS (sleep apnea syndrome) is 
diagnosed when apnea occurs five or more times per hour 
during sleep. The number of potential SAS patients in Japan 
is estimated to be around 5 million [2]. SAS patients are 
prone to complications such as lifestyle-related diseases and 
are unable to achieve deep sleep. This makes it difficult to 
prevent or recover from the disease, which may lead to death 
by myocardial infarction or heart attack if SAS patients are 
left untreated [2]. 

To detect these symptoms at an early state, it is important 
to monitor respiratory state during sleep. Polysomnography 
is a common technique for measuring respiratory state 
during sleep. It uses multiple sensors to comprehensively 
determine the electroencephalogram, blood oxygenation, 
electrocardiogram, chest and abdominal movements, and 
airflow in the trachea during sleep. There are ten types of 
sensors used in the examination [3]. Three of them are 

sensors that measure respiration. However, 
polysomnography requires a contact-type sensor, which 
imposes a heavy burden on users. In addition, it requires a 
visit to a hospital because of the need to inspect precision 
equipment. 

Cho et al. proposed a method for detecting respiration by 
detecting the nostril region from thermal images and 
detecting the temperature change of the nostrils due to 
respiration [4]. However, this method requires a special 
camera to capture thermal images, which is very expensive. 
Walter et al. proposed a method for estimating respiratory 
rate using a photoplethysmography obtained from a contact-
type sensor [5]. However, this method uses a contact-type 
device, which may be uncomfortable to subjects when worn 
for long periods of time during sleep. In addition, trauma or 
burns to the fingers make it nearly impossible to use a 
contact-type sensor [6]. Furthermore, respiratory state, such 
as respiratory depth, cannot be detected by respiratory rate 
alone. Kurita et al. proposed a method for estimating pulse 
wave signal using RGB face video images as a non-contact 
method for estimating pulse wave signal [7]. However, this 
method is difficult to use at night during sleep because it uses 
an RGB camera. 

In this paper, we investigate whether respiratory state is 
reflected in non-contact acquisition of respiratory-induced 
features for non-contact monitoring of respiratory state in the 
dark. Specifically, we acquired respiratory-induced features 
from near-infrared face video images and obtained 
correlation coefficients with respiratory measurements. The 



results showed there was a correlation between normal, deep 
and shallow breath states. In addition, machine learning 
utilizing features of respiratory-induced variation was used 
to estimate apnea state. The results of this study allow a 
knowledge deepening in the field of non-contact estimation 
of respiratory state in the dark. 

2 METHODS 

2.1 Conventional method 
A method to estimate respiratory rate by extracting three 

respiratory-induced variations from the PPG 
(photoplethysmography) signal has been reported [5]. 
Respiratory-induced variations are strongly correlated with 
the PPG signal. Figure 1 shows the characteristics of 
respiratory-induced variation in the PPG signal. RIAV 
(respiratory induced amplitude variation) is a characteristic 
quantity caused by an increase in cardiac output during 
inspiration due to changes in intrathoracic pressure, and by 
an increase or decrease in the volume of blood flow. This can 
be obtained by calculating the difference between the upper 
and lower peak points. RIIV (respiratory induced intensity 
variation) is a characteristic quantity caused by an increase 
in the inflow of blood to the heart due to the dilation of the 
veins during inspiration caused by a decrease in intrathoracic 
pressure. This can be obtained by calculating the trend of the 
line connecting the adjacent peak points. RIFV (respiratory 
induced frequency variation) is a characteristic value that the 
heart rate increases during inspiration and decreases during 
expiration. This can be obtained by calculating peak interval 
of the pulse wave signal.  

 

Fig. 1. Respiratory-induced features 

2.2 Proposed method 
Figure 2 shows the procedure for extracting the pulse 

wave signal from near-infrared face video images. A near-
infrared camera was used because they use wavelengths that 
are invisible to human eyes. The pulse wave signal can be 
estimated by setting the ROI (region of interest) from the 

face video images and outputting a time series of average 
pixel values. The ROI was set in the area including the 
subject’s nose and cheeks [8, 9]. By setting the ROI on this 
part of the face, the pulse wave signal can be effectively 
acquired. The ROI was set manually. The obtained pulse 
wave signal was detrended [10]. The detrended pulse wave 
signal was then bandpass filtered. The passband for bandpass 
filtering was set to [0.75, 4.0] Hz [11, 12, 13]. 

 

Fig. 2. Procedure for extracting pulse wave signal 
 from near-infrared face video images 

 
After bandpass filtering, respiratory-induced features 

were obtained. To obtain features, the peak points were 
detected from the pulse wave signal after bandpass filtering 
[9]. There are a total of seven acquired features obtained: 
RIAV, RIIV (obtained from the upper and lower peak points 
respectively), RIFV (obtained from the upper and lower peak 
points respectively) and DOPP (difference of peak points) 
(obtained from the upper and lower peak points respectively). 
The two features in DOPP are newly introduced in our 
proposed method. Figure 3 shows these seven features. 

 

Fig. 3. Seven features used in the proposed method 

3 EXPERIMENTAL PROCEDURES 

Figure 4 shows the experimental environment. The 
subjects were three males in their 20s. In this experiment, the 
camera was placed in a dark room. In the experimental 
condition, face video images were acquired while the 
subjects were sitting. The subjects were instructed to remain 
still during the filming. The subjects’ faces were fixed using 
a chin rest, which minimized the subjects’ head motion as 



much as possible. A monochrome camera (DMK33UX174, 
The imaging source) with a near-infrared filter (Edmund 
Optics) that passes light at wavelengths range of 750-850nm 
was used as a near-infrared camera. The resolution of this 
camera’s sensor was 1920 × 1200 pixels. Video images of 
1280 × 960 pixels in the center of 1920 × 1200 pixels was 
captured by configuring the settings of capturing software. 
The exposure time of the camera was 1/60 seconds. This is 
the reciprocal of the frame rate. Near-infrared LED was used 
as the light source in the near-infrared region. The peak 
wavelength of the near-infrared LED was 840 nm. The 
ground truth of respiration state was measured by a 
respirometer attached to the subject’s chest. 

 

Fig. 4. Experimental environment 
 

In these experimental conditions, the following 
procedure was used. 

Condition1: normal breathing (60 seconds) 
Condition2: normal breathing (20 seconds) →  apnea 

(10 seconds) → normal breathing (30 seconds) 
Condition3: deep breathing (30 seconds) →  shallow 

breathing (30 seconds). 
Under these conditions, the subjects were instructed to 

change their respiratory state during the imaging. Each 
subject’s respiratory rate for 60 seconds was 12, 13 and 11 
breaths respectively in condition 1. In condition 3, subjects 
were instructed to breathe once every 6 seconds for deep 
breathing and once every 3 seconds for shallow breathing. 
Figures 5, 6 and 7 shows the ground truths for one subject 
under these conditions. 

 

Fig. 5. Ground truth (Condition 1) 
 

 

Fig. 6. Ground truth (Condition 2) 
 

 

Fig. 7. Ground truth (Condition 3) 

4 RESULTS OF EXPERIMENT 

4.1 Estimation of pulse wave signals 
In the experiment, the correlation coefficients between 

the pulse wave signals estimated from the face video images 
and those measured by the pulse wave meter were 
determined. The mean value and standard deviation of the 
correlation coefficients for a total of nine pulse wave signals 
were 0.72±0.06. This result indicates that the estimated 
pulse wave signal has a high correlation with the pulse wave 
signal measured by the pulse wave meter. The peak points 



are detected from the estimated pulse wave signal after 
detrending and bandpass filtering. Figure 8 shows the pulse 
wave signal after detrending and bandpass filtering and the 
pulse wave signal measured with a pulse wave meter. This 
figure shows that the position and the variability of the peak 
points coincide in the two pulse wave signals. This result 
indicates that the accuracy of pulse wave estimation in this 
study does not affect the acquisition of respiratory-induced 
features. 

 

Fig. 8. The pulse wave signal after signal processing and 
the pulse wave signal measured with a pulse wave meter 

4.2 Estimation of respiratory-induced features 
Figures 9, 10 and 11 show the results of feature 

estimation in condition1, 2 and 3, respectively, for a subject. 
The points (observed) in the figures indicate the values of the 
acquired features. The solid lines (fitted) in the figures are 
straight lines connecting every two points. 

Table 1 shows the correlation coefficients between each 
estimated respiratory-induced feature and the ground truth. 
The mean and standard deviation of the correlation 
coefficient were calculated for the three subjects. In this 
study, the correlation coefficient was considered to be 
correlated with the ground truth if the mean value of the 
correlation coefficient was greater than 0.50. RIAV and RIIV 
were correlated with the ground truth in condition 1. RIIV 
was correlated with the ground truth in condition 3. On the 
other hand, no features correlated with the ground truth in 
condition 2. This result indicates that temporal variations in 
respiration can be detected only in conditions 1 and 3. 

 

    

(a) (b) (c) (d) 
Fig. 9 Results of feature estimation in condition 1. (a) RIAV; (b) RIIV (obtained from the upper peak points); 

(c) RIFV (obtained from the upper peak points); (d) DOPP (obtained from the upper peak points). 
 

    
(a) (b) (c) (d) 

Fig. 10 Results of feature estimation in condition 2. (a) RIAV; (b) RIIV (obtained from the upper peak points); 
(c) RIFV (obtained from the upper peak points); (d) DOPP (obtained from the upper peak points). 

 



 
 

  

(a) (b) (c) (d) 
Fig. 11 Results of feature estimation in condition 3. (a) RIAV; (b) RIIV (obtained from the upper peak points); 

(c) RIFV (obtained from the upper peak points); (d) DOPP (obtained from the upper peak points). 

Table 1. The correlation coefficients between estimated 
respiratory-induced features and the ground truth. 

Condition Features Correlation 
coefficient 

Condition 1 RIAV 0.54±0.15 
RIIV 0.65±0.12 
RIFV −0.39±0.14 
DOPP −0.48±0.12 

Condition 2 RIAV 0.24±0.13 
RIIV 0.18±0.15 
RIFV −0.26±0.09 
DOPP −0.19±0.15 

Condition 3 RIAV 0.32±0.14 
RIIV 0.52±0.27 
RIFV −0.14±0.11 
DOPP −0.28±0.03 

4.3 Estimation of apnea state 
To improve the accuracy of apnea state estimation, we 

attempted to estimate the ground truth obtained from the 
respirometer using SVR (support vector regression). This 
was attempted because the apnea state is clearly indicated in 
the ground truth as shown in Figure 6. The input values used 
for SVR are the seven features described in section 2.2. The 
kernels and parameters of the SVR were set to various 
conditions, and the kernels and parameters of the condition 
that showed the highest performance were used. In this study, 
a linear kernel was used. In addition, the regularization 
parameter C was set to 1.0 and the hyperparameter epsilon 
to 2.0. 

3-fold cross-validation was performed using nine data 
sets from three subjects. Data from two subjects were used 
for training, and data from the remaining subject was used 
for testing. The correlation coefficient between the value 
estimated by SVR and the ground truth was 0.46 ± 0.07. 
Comparing this result with the value of the correlation 
coefficient for condition 2 in Table 1, the use of SVR resulted 

in a higher correlation with the ground truth. However, 
compared to the results for conditions 1 and 3 in Table 1, the 
correlation with the ground truth was still low. 

Figure 12 shows the ground truth for condition 2 and the 
estimated values output by the SVR for a subject. The values 
fluctuate less in the apnea state than in the normal breathing 
state. This indicates the possibility of apnea state detection. 

 

Figure 12. Estimated value from SVR and  
the ground truth in condition 2. 

5 DISCUSSION 

From the experimental results, normal breathing, deep 
breathing and shallow breathing states have correlation with 
respiratory measurements. However, the apnea state showed 
a lower correlation than the other respiratory states. This is 
due to the occurrence of a symptom called compensatory 
mechanism. Compensatory mechanism is a function to 
maintain blood flow to the systemic circulation, especially to 
vital organs, even when cardiac function declines [14]. In the 
apnea state shown in Figure 13, the blood volume necessary 
for life is maintained at first, but after reaching the peak, the 
blood volume gradually decreases. Therefore, the correlation 
was low in apnea state. 

We evaluate polysomnography and the method we 
implemented in terms of usability, reliability and costs. In 
terms of usability, the proposed method does not require the 



user to wear sensors or equipment. Therefore, the proposed 
method can detect respiratory state with minimal burden on 
the user. In terms of reliability, the proposed method uses 
only a camera as a sensor, whereas polysomnography 
comprehensively determines respiratory state based on data 
obtained from various sensors, resulting in lower accuracy. 
In terms of costs, the proposed method can reduce costs 
because cameras are less expensive than the equipment used 
in polysomnography. Potential applications of the proposed 
method include home healthcare and nursing care facilities. 
Although the accuracy of respiratory state estimation is 
lower than that of polysomnography in these situations, the 
cost of the proposed method can be significantly reduced as 
described above. Further improvement of the accuracy of 
respiratory state estimation is needed to achieve the same 
accuracy as polysomnography and to enable its application 
in medical settings. 

 
Fig. 13. RIIV components in apnea state 

6 CONCLUSION AND FUTURE WORKS 

In this paper, we investigate whether respiratory state is 
reflected in non-contact acquisition of respiratory-induced 
features for non-contact monitoring of respiratory state in the 
dark. Specifically, we acquired respiratory-induced features 
from near-infrared face video images and obtained 
correlation coefficients with respiratory measurements. 
Experimental results showed there were correlations for 
normal, deep and shallow breath state in some of the feature 
values. These indicate that the respiratory state is reflected in 
some feature values. However, the apnea state could not be 
detected. Therefore, we attempted to detect the apnea state 
by learning features related to respiratory-induced variation 
using machine learning. The results showed that the 
correlation between estimated and measured respiration 
values was higher than for the features alone. 

One of our future works is to make it possible to 
determine the respiratory state using only feature values. The 
results of this study indicate that the respiratory state is 

reflected in some feature values. This suggests the possibility 
of non-contact estimation of respiratory state. It is necessary 
to determine the respiratory state using the respiratory-
induced features by analyzing their amplitudes and 
frequencies and by performing further experiments. 

In our experiment, the face was fixed using a chin rest. 
Therefore, the artifact caused by facial movement was 
almost negligible, and the pulse wave signal could be 
estimated with high accuracy. However, in the actual 
application of this method, it is expected that the face will 
move. Therefore, it is necessary to accommodate facial 
motion when estimating the pulse wave signal. In our 
method, the ROI used to estimate the pulse wave signal was 
fixed. To accommodate facial motion, it is necessary to 
detect the face and automatically set the ROI according to 
the facial motion. 
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