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Abstract: We propose a method for the remote estimation of the heart rate and heart rate variability spectrogram by analyzing 

the hemoglobin concentration obtained from RGB facial videos taken in a low-light environment. The monitoring of emotion 

has potential in areas such as market research, safety, and health. In particular, methods of analyzing the heart rate obtained from 

RGB video are expected to be used practically. However, these studies cannot be applied in dark locations where monitoring is 

necessary, such as an infant’s bedroom, a crime-prone road, and within a car. The proposed method therefore uses a highly 

sensitivity RGB camera capable of capturing videos at low illuminance. As the result, we could measure the heart rate with 

accuracy exceeding 99% and estimate the heart rate variability spectrogram with high accuracy for low-light environments of 10 

lux, which corresponds to brightness levels of the monitoring environments given above. 

 

Keywords: heart rate, high-sensitivity camera, illuminance, low-light environment, photoplethysmography 

 

1 INTRODUCTION 

The monitoring of emotion has great potential 

application in areas such as market research, safety, health, 

and robotics. Among such applications, the prevention of 

potential accidents or crime is important in realizing a safe 

social system. Monitoring with a surveillance camera, for 

example, allows the detection of people who are trying to 

commit a crime or who are excessively excited. Furthermore, 

accidents due to dangerous driving can be prevented by 

monitoring the driver of the car and measuring drowsiness 

and concentration. This technique of emotion monitoring has 

long been studied. Many researchers have attempted to 

realize emotion recognition using, for example, facial 

expressions [1][2], voices [3][4], and physiological signals 

[5][6][7]. In particular, physiological signals have attracted 

the most attention in recent years for emotion recognition. In 

the field of physiological psychology, it is known that there 

is strong correlation between the physiological response 

through the action of the autonomic nervous system and the 

human emotional state. Furthermore, physiological signals 

are less affected by social and cultural differences [8]. We 

can estimate original emotions that people were trying to 

hide or that they could not even recognize in themselves. 

Park et al. [5] used electrodes to measure physiological 

signals of the skin temperature, electrodermal activity, 

photoplethysmography, and electrocardiogram of 12 healthy 

participants before and after they watched movies that 

elicited seven emotions (i.e., happiness, sadness, anger, fear, 

disgust, surprise, and stress). They were able to classify the 

seven emotions with around 90% accuracy by selecting 

useful features for emotion recognition through the particle 

swarm optimization of features obtained by analyzing the 

measured physiological signals. In this way, it is possible to 

classify emotions using physiological signals. However, 

such an approach is not practical because it requires special 

measuring devices, such as contact-type devices. Moreover, 

contact-type devices might be uncomfortable for the 

participants in that place a burden on participants and thus 

induce stress. 

Kurita et al. [6] and Okada et al. [7] realized a remote 

heart rate variability (HRV) measurement system using an 

RGB camera by analyzing the hemoglobin concentration 

obtained from color facial images. They identified if 

participants were relaxed or stressed or felt any of five 

emotions by performing frequency analysis on the HRV. 

They were able to detect stress without causing unnecessary 

discomfort to the participants. However, their approach 

could not be applied to low-brightness images taken in the 

dark, such as those taken inside a car or at night, because they 

used an ordinary camera. 

Zhao et al. [9] measured heart and respiration rates by 

applying delay-coordinate transformation and independent 

component analysis. Because they used a camera that is 

sensitive to visible and near-infrared light, their method can 

be applied both during the day and at night. However, their 

approach requires a near-infrared light-emitting diode. 



The present paper proposes a method of measuring a 

pulse wave using an ultrahigh sensitivity camera in a low-

illumination environment, which does not require special 

light sources or contact devices. Our method deals with the 

hemoglobin concentration obtained by analyzing facial 

images captured with an ultrahigh sensitive RGB camera 

capable of capturing with a high inter-scene dynamic range 

even under low illuminance. 

2 METHOD OF REMOTE MEASUREMENT 

FOR A PULSE WAVE 

Various methods of pulse wave measurement have been 

proposed using a camera. Kurita et al. [6] and Okada et al. 

[7] measured the pulse wave without contact by detecting the 

hemoglobin concentration from a facial image and acquiring 

the temporal change. This method is based on biological 

optics and is credible. The present paper therefore applies 

independent component analysis to the RGB pixel values of 

the facial image to separate skin pigments and to extract 

hemoglobin-component images. We treat the change in the 

average pixel value of the hemoglobin-component images as 

a pulse wave. 

Figure 1 shows the model of human skin. Human skin is 

a multilayer structure that can be roughly divided into the 

epidermis, dermis, and subcutaneous tissue. In practice, the 

boundary surface of each layer has an irregular shape. 

However, we treat the boundary surface as a planar shape for 

simplicity. Human skin contains melanin and hemoglobin 

pigments. The color tone of human skin is greatly affected 

by these pigments. Melanin pigments exist in the epidermis 

and hemoglobin pigments exist in the dermis. Melanin and 

hemoglobin pigments can therefore be regarded as being 

present with spatially independence by assuming that the 

epidermis is a melanin layer and the dermis is a hemoglobin 

layer. Light incident on the human skin can be divided into 

light reflected at the surface and internally reflected light 

emitted to the outside of the skin after repeated absorption 

and scattering within the skin. While surface-reflected light 

represents the color of the light source, such as in the case of 

gloss, the internally reflected light represents the color of the 

skin. In this paper, we take images without surface-reflected 

light with polarizing plates placed in front of the camera and 

a light source using the algorithm proposed by Ojima et al. 

[10]. When the modified Lambert–Beer law is assumed to 

hold with respect to the observed signal of the reflected light, 

the observed signal can be represented via logarithmic 

conversion from the image space to the density space as 

 
, (1) 

where vlog is the converted observation signal, (x, y) is the 

pixel location, m and h are respectively the concentrations 

of melanin and hemoglobin pigments, m and h are 

respectively the absorption cross sections of melanin and 

hemoglobin pigments, plog is a shading parameter relating to 

the shape of the skin, 1 is a vector of the strength of the 

shading, and elog is a bias vector. We can therefore regard 

melanin and hemoglobin pigments as independent signals as 

shown in Figure 2. It is thus possible to obtain the melanin 

and hemoglobin pigment concentration distributions from 

RGB values of facial images. 

 

Fig. 1. Movement of light incident on the skin 

model  

Fig. 2. Obtained signals and three independent 

signals 

 

Figures 3 (b) shows the hemoglobin pigments extracted 

by independent component analysis of the internal-reflection 

facial image shown in Figure 3 (a). Figure 4 (a) is a facial 

image taken under fluorescent light. In the case that the facial 

image contains surface-reflected light, we can separate skin 

pigments as shown in Figure 4 (b) using each pigment 

component color vector estimated from the internal-

reflection image. 
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(a) Original (b) Hemoglobin 

Fig. 3. Result of skin pigment separation for an internal-

reflection facial image: (a) original, (b) hemoglobin 
  

(a) Original (b) Hemoglobin 

Fig. 4. Result of skin pigment separation for a 

fluorescent lamp image: (a) original, (b) hemoglobin 

 

The change in the average pixel values of the 

hemoglobin-component images is the signal of the blood 

volume change. However, temporal changes in pixel values 

acquired from the entire image also include changes due to 

the blinking of eyes and body movements. Therefore, a 

region excluding the eyes in the facial region detected 

employing the Viola–Jones method [11], the region of the 

forehead (i.e., half the width and top 25% of the face), and 

the region around the mouth (i.e., half the width and the 

bottom half of the face) were set as the region of interest 

(ROI). Figure 5 shows sets of the ROI in the hemoglobin-

component image while Figure 6 shows the change in time 

of the average pixel values of the ROI in the hemoglobin-

component images. The peaks of the signal of the blood 

volume change correspond to the peaks of the 

electrocardiogram waveform called an R wave. The intervals 

between R waves are called RR intervals and are important 

in heart-rate analysis. The signal was detrended to allow easy 

peak detection [12]. Subsequently, the detrended signal was 

multi-band-pass filtered with a Hamming window to reduce 

noise in the original wave. The multi-band-pass filter was 

adjusted for each signal by setting the width of the peak 

closest to 1 Hz and the width of its second harmonic in the 

frequency-converted detrended signal to the pass band. A 

frequency of 1 Hz corresponds to 60 beats per minute (bpm), 

which is a general heart rate (HR) for a normal state. The 

filtered signal was interpolated with a cubic spline function 

at 50 Hz to match the sampling frequency of the 

electrocardiogram measured as the correct value. The RR 

intervals were calculated by peak detection with respect to 

the filtered signal. Figures 7 and 8 show the detrended, 

filtered signal and RR intervals. 

  

Fig. 5. Area of the set ROI 

 

 
Fig. 6. Average pixel values of hemoglobin-component 

images 

 

 
Fig. 7. Normalized, detrended and filtered signal 

 

Fig. 8. RR intervals 

 

The noise from the camera due to low illuminance affects 

the accuracy of HR analysis. The present paper filters RR 

intervals using the non-causal of variable threshold 

algorithm [13] to remove such noise.  

We calculated the HR and HRV to compare the 

performances of the electrocardiogram and camera methods. 

The HR was calculated as 60/RR, where RR denotes the 

mean of RR intervals. The HRV, which is the variation of 

consecutive heartbeats, is modulated by both the sympathetic 

and parasympathetic branches of the autonomic nervous 
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system. The most conspicuous periodic component of the 

HRV is considered to range from 0.15 to 0.4 Hz. In addition 

to the physiological effect of breathing on the HRV, the high-

frequency (HF) component in this range is generally 

believed to be of parasympathetic origin. Another widely 

studied component of the HRV is the low-frequency 

component ranging from 0.04 to 0.15 Hz, which has been 

thought to be of both sympathetic and parasympathetic 

origin. The components of the HRV have been found to 

correlate with, for example, age, mental and physical stress, 

and attention [14]. The highly accurate estimation of the 

HRV spectrum is therefore important. We created an HRV 

spectrogram by calculating the power spectral density of the 

RR intervals for each moving window. The power spectral 

density was calculated using the Lomb periodogram [15]. 

Conventional spectral analysis techniques, such as Welch's 

method [16], require that the input signal be uniformly 

sampled. If the sampling is not uniform, such as in the case 

of the RR interval, the signal needs to be resampled or 

interpolated to a uniform sample rate. However, such 

processing can add undesirable artifacts to the spectrum, 

leading to parsing errors. Because the Lomb periodogram 

directly processes nonuniform samples, resampling and 

interpolation are unnecessary, and it is useful for the spectral 

analysis of RR intervals. We used a window of 1 minute and 

a step size of 1 s. 

3 EXPERIMENT CONDUCTED UNDER VARI

OUS INTENSITIES OF ILLUMINANCE 

The experiments were conducted in a dark room as 

shown in Figure 9 and one healthy Asian male student 

participated. An 18-bit camera [Xviii: ViewPLUS] and 

dimming light source were placed 1 m from the participant. 

We used a camera that has ultrahigh sensitivity and a high 

inter-scene dynamic range even if the exposure conditions 

hardly change and that can simultaneously capture subjects 

with illuminance of 0.01 and 400 lux or more at 30 fps. 

Illuminance of 0.01 lux is typically that of a half moon or 

starlight while illuminance of 400 lux is typically that under 

fluorescent lighting.  

The present study acquired a pulse wave employing the 

aforementioned method and the pixel values of the ultrahigh 

sensitivity camera with 18-bit output. The dimming light 

source was used to continuously adjust the brightness 

manually in accordance with the illuminance of the 

participant's face. Face was fixed using a chin rest in this 

study.  

 

 
Fig. 9. Experimental environment 

 

Prior to the experiment, participant was introduced to the 

procedure of the experiments and had time to adapt and feel 

comfortable in the experimental environment. The 

brightness of the light source, measured with an 

illuminometer, was adjusted so that the illuminance of the 

face was 5, 10, 50, 100, 200, and 300 lux. The participant’ 

face was captured for 2 minutes at each illuminance. 

We measured the correct value of the HR from the 

electrocardiogram using a polygraph system [RMT-1000: 

Nihon Kohden Inc]. We set the measurement resolution at 50 

Hz and applied a low-pass filter. The cut-off frequency was 

set at 15 Hz. This was sufficient to get the peaks of R waves. 

From the signals, we obtained RR intervals and calculated 

the HR as ground truth data employing the method used for 

the hemoglobin-component signal. 

4 RESULTS 

Figure 10 shows the accuracy of the HR at each 

illuminance. The accuracy is calculated as  
 

,

 

(2) 

where E is the estimated HR and G is the ground truth data 

obtained from the electrocardiogram. Figure 11 shows the 

noise in the captured images by the ultrahigh sensitivity 

camera at low illuminance of 5 and 10 lux. 

 

 
Fig. 10. Accuracy of HR at each illuminance 
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(a) 10 lux 

 

(b) 5 lux 

Fig 11. Noise in the captured images at low illuminance 

 

Figure 12 compares the HRVs obtained from the previous 8-

bit camera, the ultrahigh sensitivity camera, and the 

electrocardiogram at each illuminance. When the 

illumination environment was between 50 and 300 lux, the 

results obtained by the cameras were almost the same as 

those calculated from the electrocardiogram. In the case of 

10 lux, the noise in the estimation result of the 18-bit camera 

increased slightly but the frequency with the highest power 

spectral density was similar to the ground truth.  

 

  

 

 

Fig. 12. Comparison of HRVs 

 

5 DISCUSSION 

Illuminances of 300, 200, 100, 50, 10 and 5 lux 

respectively correspond to the brightness of a general office 

under fluorescent lighting, family living room, night 

entrance, the ground under a street light, twilight, and a 

residential street at night. The HR was estimated with nearly 

100% accuracy using the 18-bit camera in lower-illuminance 

environments. The results show that our method can be 

applied to general household environments and roads. 
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Measurement of the HR in such dark places has applications 

relating to sudden infant death syndrome, driver monitoring, 

and crime deterrence. The estimation at 5 lux was less 

accurate than that for the brighter illumination environments. 

This low accuracy seems to be due to noise from the camera 

being dominant as shown in Figure 11. However, the result 

shows that the accuracy was considerably better than that 

achieved with an 8-bit camera. 

The HRV is modulated by the autonomic nervous system. 

Spectral analysis of the HRV is important because the mental 

state, such as a stressed or drowsy state, can be estimated 

from the function of the autonomic nervous system. The 

calculated HRV spectrograms were almost perfectly 

reproduced at and above 50 lux. Even at 10 lux, although 

noise was slightly stronger, the strongest spectra were almost 

the same as the ground truth. The result therefore seems 

sufficiently accurate for the detection of stress. The value 

estimated when the face illuminance was 5 lux was different 

from the true value. This result seems to be affected by the 

predominant noise that was not removed even by processing, 

such as spatial averaging, multi-band-pass filtering, and use 

of the non-causal of variable threshold algorithm. To 

effectively handle such noise, additional processing should 

be considered before extracting the hemoglobin content.  

6 CONCLUSION AND FUTURE WORK 

We measured the pulse wave from the hemoglobin 

concentration obtained by analyzing an RGB image of the 

face taken with a high-sensitivity camera in a low-

illuminance environment. The HR and HRV spectrogram 

useful for emotion estimation were calculated from the 

measured pulse wave. The accuracies of the estimation based 

on the HR and HRV spectrogram were almost 100% under 

illumination exceeding 10 lux. 

Our future work is to improve the accuracy at low 

illuminance of 5 lux or less by eliminating random noise due 

to the camera and to apply the technique to the monitoring of 

driver emotion. Emotion can be estimated regardless of the 

lighting condition using a camera having ultrahigh sensitivity. 
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