
 

 

 

Abstract 

 

Emotions have a significant effect on our daily behavior, 

such as perception, memory, and decision making. For this 

reason, interest in considering the emotions of the user in a 

human-computer interface has recently increased. This is 

important for future interface applications, which are 

expected to operate in harmony with humans. In this paper, 

we present our approach to instantaneously detecting the 

emotions of video viewers from remote measurement using 

an RGB camera. Facial expression and physiological 

responses, such as heart rate and pupil diameter, were 

measured by analyzing facial videos. We also verified the 

effectiveness of the contactless measurement by acquiring 

electroencephalogram signals using a contact-type 

electroencephalograph. By combining the measured 

responses into multimodal features and using machine 

learning, we showed that the results of emotion estimation 

were better than estimates made from only single-mode 

features. 

 

1. Introduction 

Estimation of emotions is one of the major concerns in 

the development of human-computer interfaces for robots. 

The demand for customer service robots and welfare 

support robots is increasing in Japanese society, where 

population decline is regarded as a problem. These service 

robots are required to interact naturally with humans. In this 

situation, if the robot is able to be mindful of the customer 

and behave in a manner that considers the customer’s state 
of mind, the robot may offer better service than humans. 

Extensive research has been conducted for this purpose, 

and it has focused particularly on expressions such as the 

user’s gaze direction [1], head position, facial expression 
(FE) [2], behavior, and speech [3]. However, the limitation 

of these approaches is that they cannot recognize emotions 

accurately when FE and actions are intentionally falsified. 

For example, people can express a fake smile. For this 

reason, research that combines physiological information, 

such as electroencephalography (EEG) and heart rate (HR), 

has been conducted to estimate emotions. Physiological 

psychology has shown that there is a strong correlation 

between human emotions and the physiological response of 

the autonomic nervous system. In addition, physiological 

responses cannot be controlled intentionally. Measuring 

physiological responses from the human face and body 

using a camera is a new research area that has grown 

rapidly in recent years, and it provides a natural way for 

robots to use their cameras to estimate emotions without 

physical contact. 

Most research on automatic emotion recognition has 

focused on the analysis of six individual basic emotions [4] 

(happiness, sadness, surprise, fear, anger, and disgust). 

However, these basic emotions are independent and may 

not be able to explain the complexity of affective 

conditions very well. For this reason, research has been 

conducted to measure human affects such as excitement [5], 

stress [6], concentration [7], and relaxation [8]. In contrast, 

detection of continuous or dimensional emotional 

expressions is based on the assumption that emotions can 

be described in a continuum without being divided into 

distinct groups [9, 10]. Because each emotion can be 

expressed continuously, measuring continuous changes in 

emotions is useful. To achieve a natural and intuitive 

interaction between humans and robots, it is essential that 

time-continuous emotion prediction analyze subtle and 

complex affective states of humans over time. 

The goal of this study was to continuously detect 

emotions from FEs and the physiological responses of pupil 
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diameter and HR. In addition, the effectiveness of 

contactless measurement was verified by comparing its 

accuracy with EEG signals obtained using a contact-type 

electroencephalograph. First, we collected facial videos 

and EEG data for subjects watching a set of 

emotion-evoking videos. During the viewing, subjects 

continuously recorded their feelings while watching the 

videos. The continuous annotations served as the ground 

truth for our continuous emotion detection system. Next, 

FEs and physiological responses (HR and pupil diameter) 

were remotely measured by analyzing the facial videos. 

Finally, by combining the measured responses as 

multimodal features and using an extreme learning 

machine (ELM), we performed continuous emotion 

detection. We evaluated the emotion detection results with 

a 10-fold cross-validation strategy using an average 

correlation coefficient and the concordance congruence 

coefficient (CCC). To the best of our knowledge, this is the 

first attempt to detect continuous emotions, in both time 

and dimension, using subjective assessment annotations as 

the ground truth label. 

The rest of this paper is structured as follows. We 

describe related work with multimodal emotion recognition 

and temporal dynamics of emotions in Section 2. The 

experimental environment is outlined in Section 3. 

Contactless measurement features obtained from the 

camera and EEG features are given in Section 4. Section 5 

describes the ELM method for emotion recognition. The 

experimental results are presented and discussed in Section 

6. Finally, the paper is concluded in Section 7. 

 

2. Background 

A major attempt to advance the state of the art in 

continuous emotion detection was the Audio/Visual 

Emotion Challenge (AVEC) 2012 [11]. The goal of the 

AVEC 2012 challenge was to detect the continuous 

dimensional emotions using audiovisual signals. Since then, 

many researchers have tried to detect continuous 

dimensional emotions using various modalities. 

Mohammad et al. used FE and brain waves [12]. Bugnon et 

al. used pulse waves measured by a contact-type sensor 

[13]. A comprehensive review of continuous emotion 

detection is given in [14]. The ground truth label in these 

studies was a weighted average of objective evaluations by 

multiple annotators. 

Meanwhile, McDuff et al. measured the level of smiling 

during viewing of a video advertisement to assess the 

subjects’ preference for the content [15]. Chakraborty et al. 

detected viewer interest automatically using FE and HR 

[16]. The ground truth label in these studies was determined 

from subjective annotations and ratings. Because we are 

interested in detecting the emotions we feel, we focus on 

emotions determined from subject annotations and ratings. 

Also, the performance of multimodal emotion 

recognition is generally better than a single modality. Many 

studies have shown the effectiveness of combining FE 

responses and biological responses [16, 17, 18]. These 

results demonstrated that HR signals could provide 

complementary information during FE detection. 

 

3. Data Set and Annotations 

3.1. Participants 

Subjects were recruited on campus from 35 healthy 

right-handed students, comprising 23 men and 12 women 

with an age range of 21 to 25 years. All subjects underwent 

a physical evaluation to screen out chronic diseases and 

mental disorders. These were assessed by the Japanese 

versions of the autism-spectrum quotient [19], the Toronto 

alexithymia scale [20], the Beck depression inventory [21], 

and the State-Trait anxiety inventory [22]. No subjects 

were excluded from this study due to mental disorder. 

Participants granted their written informed consent to 

capture facial videos and perform EEG, and all were 

informed of their right to discontinue participation at any 

time. Each subject received 2,000 Japanese yen for 

participation. The study procedures were approved by the 

Engineering Research Ethical Committee of the Chiba 

University, under reference number 31-08. 

3.2. Stimuli Video Clips 

Our study used movie clips collected from FilmStim [23] 

as emotional stimuli. FilmStim is a database of brief video 

clips intended to elicit emotional states in experimental 

psychology experiments. Six movie scenes were selected to 

cover the whole spectrum of emotions from famous 

commercial movies, specifically “There is Something 
about Mary,” “American History X,” “The Silence of the 
Lambs,” “The Blair Witch Project,” “A Perfect World,” 
and “The Dead Poets Society.” Each film scene is intended 
to elicit amusement, anger, disgust, fear, sadness, or 

tenderness. The duration of each movie clip is 83-279 

seconds, which is long enough to evoke emotions in the 

viewer [24]. 

3.3. Data Collection 

The experimental setup is shown in Figure 1. Subjects 

were asked to sit on a chair and place their head on a chin 

rest. We asked subjects to keep their body as motionless as 

possible during the experiment. However, facial 

expressions are not limited and are expressed naturally. The 

facial videos and EEG were recorded from the subjects 

watching video clips. Video FE data were recorded using a 

DFK33UX174 RGB camera from Argo Inc. This camera 



 

 

has a resolution of 1,024×768 pixels at 30 frames per 

second. Video clips were played randomly for each subject, 

and 210 videos were recorded in total. EEG signals were 

acquired from 16 active electrodes on an international 

10-20 system using an OpenBCI Ultracortex Mark IV 

(electrode impedance < 10 kΩ, 1–50 Hz, and 125 

samples/sec).  

Subjects self-reported dynamic emotions that played out 

over time using software based on the dual axis rating and 

media annotation tool (DARMA) [15] and a joystick. 

DARMA is a modernized continuous measurement system 

that synchronizes media playback and the continuous 

recording of two-dimensional measurements [15]. The 

subjects plotted their emotional state using a joystick whose 

positions corresponded to the Russell’s dimensional 
emotional expressions [9] shown in Figure 2. The level of 

arousal and valence elicited by watching the video clips 

were recorded in the range [-1,000, 1,000] at a sampling 

rate of 2 Hz as ground truth. 

To synchronize the acquired signal with the video clip, 

we centrally monitored the timing of all sensors with 

modified DARMA and an Arduino interface. Trigger 

signals were sent from DARMA to the interface when the 

video clip was started and ended. Thus, the EEG data 

captured a trigger signal from Arduino. In addition, an LED 

light attached to the chin rest was turned on by the trigger 

signal. The facial videos ware automatically cropped when 

the reflected LED light was turned on. This allowed us to 

synchronize the ground truth data with all other modalities. 

 

 

Figure 1. Experimental setup. The distance between the LED light 

source and subject is approximately 1.2 m. The distance between 

the RGB camera and subject is approximately 1.0 m. 

 

Figure 2. Russell’s dimensional emotional expressions. 
 

4. Feature Extraction 

The features of FE, pupil diameter, and HR were 

calculated by analyzing facial videos without physical 

contact. The features of each channel were used 

individually or in combination to estimate the subject’s 
emotions. The features used in this study and described in 

this section are summarized in Table 1. 
 

Channel Features 

FE Action unit (AU), emotion expressed by AUs 

Pupil 

diameter 

Pupil diameter ratio 

HR MeanHR, sdHR, RMSSD, pNN50, HRVti, 

SD1, SD2, aLF, aHF, pLF, pHF, nLF, nHF, 

LF/HF 

EEG Theta, alpha, beta, gamma, arousal, valence 
Table 1. Features used in the estimation of the emotions (see the 

text for explanation of abbreviations). 
 

4.1. Facial Expression (FE) Features 

We used the OpenFace library [26] to detect FE features. 

First, we extracted 68 face parts that were detected from 

each frame of the recorded facial video. We performed a 

similarity transform to align all images to a common 

reference frame using tracked facial landmarks, with a 

resolution of 112×112 pixels. Also, we detected oriented 

edges to use a histogram of oriented gradients descriptor 

(HOG). Each facial image was divided into 11×11 cells, 

and a histogram was calculated for each pixel within each 

cell according to gradient strength weights. HOG is the 

concatenation of these histograms. Using the coordinates of 

the 68 facial parts and the HOG, the 17 action units (AUs) 

shown in Table 2 were detected by a linear kernel with 

support vector regression. Each AU represents a different 

facial muscle movement. Certain combined movements of 

these facial muscles pertain to an expressed emotion. For 

example, happiness is calculated from the combination of 

AU6 (cheek rise) and AU12 (lip corner pull). A complete 

list of these combinations and the emotion obtained is given 

in Table 3. Action units and the emotions they express were 

calculated from each frame of the facial videos. 

  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

AU Description 

1 Inner brow rise 

2 Outer brow rise 

4 Brow lowering 

5 Upper lid rise 

6 Cheek rise 

7 Lid tightening 

9 Nose wrinkling 

10 Upper lip rise 

12 Lip corner pull 

14 Dimpling 

15 Lip corner depression 

17 Chin rise 

20 Lip stretch 

23 Lip tightening 

25 Lip parting 

26 Jaw drop 

45 Blink 
Table 2. Action units (AUs). 

 

 

Emotion Action Units 

Happiness/joy 6 + 12 

Sadness 1 + 4 + 15 

Surprise 1 + 2 + 5 + 26 

Fear 1 + 2 + 4 + 5 + 7 + 20 + 26 

Anger 4 + 5 + 7 + 23 

Disgust 9 + 15 + 25 

Contempt 12 + 14 
Table 3. Emotions and action units. 

 

 

4.2. Pupil Features 

We calculated the pupil diameter ratio by improving 

Filipe et al.’s method [27]. Figure 3 is a flowchart of the 

pupil diameter ratio calculation. Eye features were detected 

using the Haar Cascade method [28] from the captured 

facial video. The iris and pupil were segmented by applying 

a trained U-Net [29] model to the detected eye images. 

Next, the areas of the iris and pupil were calculated for each 

frame by performing contour detection and circle fitting on 

the output image segmented into regions. Then, the ratio 

between the iris and pupil areas was used as an index of 

pupil enlargement and contraction to avoid the problem of 

distance between the eyes and camera. Missing values due 

to blinking were interpolated linearly. The interpolated 

signal was resampled at 2 Hz, and a smoothing process was 

applied to remove noise. Finally, because the pupils of both 

eyes are almost the same size and respond to light in the 

same way, the average of the ratio of the pupil area to the 

iris area of both eyes was obtained. 

 

 

Figure 3. Flow of pupil diameter ratio calculation 

 

4.3. Heart Rate Features 

Heart rate was measured remotely using an original 

method based on Fukunishi et al.’s method [30]. Figure 4 is 

a flowchart for the remote HR measurement. First, from the 

coordinates of the detected face parts, the skin region of the 

face (the face region from which the eyes, nose, and mouth 

are removed) is taken as the region of interest. Based on the 

assumption that the skin is composed of two layers, 

melanin and hemoglobin, spatial principal component 

analysis was applied to extract the hemoglobin image, 

which is sensitive to blood volume [31]. After extraction of 

hemoglobin images from RGB images, the pulse wave was 

produced by spatially averaging the hemoglobin 

components in the region of interest. The detailed approach 

is described in [30, 31].  

 

 

Figure 4. Remote heart rate measurement. 

 

Next, detrending and a bandpass filter were applied to all 

extracted pulse waves to reduce noise. Detrending based on 

the smoothness prior approach [32] was applied to the 

waveform to eliminate low-frequency (LF) fluctuations. 

After applying the detrending, a band-pass filter was 

applied to extract the heartbeat components with a 

frequency between 0.75 Hz (45 bpm) and 3 Hz (180 bpm) 

corresponding the HR range in adults. After the band-pass 

filtering, the estimation of pulse rate variability (PRV) was 

refined by applying cubic spline interpolation to the filtered 

signal for upsampling from 30 Hz to 500 Hz. HR features 

were obtained at a 2-Hz sampling rate with a moving 

window of 30 sec and 0.5-sec increments. This window 



 

 

length makes possible to have enough data for feature 

extraction without losing time resolution [33]. 

The interbeat intervals (IBIs) were calculated by 

detecting the peaks in the moving window. The 

time-domain method can be easily executed because it 

directly analyzes the IBI. The average of the HR (meanHR) 

and standard deviation of the HR (sdHR) were the most 

easily obtainable indexes. They were calculated by dividing 

60 by the average IBI. The root mean square of the 

successive difference (RMSSD) reflects the short-term 

variation. Furthermore, pNN50, which is the number of 

IBIs for which the successive difference is 50 msec or 

longer relative to the total number of consecutive IBIs, was 

also used as an indicator of parasympathetic nerve activity.  

In addition to these statistical features, we used the 

geometric-domain method, which is based on calculations 

taken from a geometric pattern whose basis lies within the 

IBI series. The most common geometric pattern used is the 

IBI histogram. The HR variability triangular index (HRVti) 

is a value obtained by dividing the area integral value (total 

number of IBIs) of the histogram of the IBI by the 

maximum value of the histogram.  

The Poincaré plot, named after Henry Poincaré (also 

called a first-return map), is a type of nonlinear-domain 

method used to quantify self-similarity [34]. Often an 

ellipse is fitted to the plotted data with the long axis along 

the line of identity defined by y = x. Standard deviations 

along the line of identity (SD2) and perpendicular to the 

line of identity (SD1) represent the magnitude of the major 

and minor axes of the ellipse, respectively. SD1 represents 

the standard deviation of the instantaneous beat-to-beat 

(short-term) variability. SD2 represents the standard 

deviation of continuous (long-term) variability. 

In the frequency-domain method, IBI power spectral 

density (PSD) is analyzed. The features obtained from the 

PSD are commonly used as an indicator of autonomic 

nervous system activity. The PSD can be estimated using 

many methods, but methods based on fast Fourier 

transform (FFT) and autoregressive (AR) modeling are 

perhaps the most popular in spectral analysis of PRV [35]. 

However, both FFT and AR-based PSD estimates have 

prerequisites that are seldom if ever met by biological 

signals, such as cardiac IBI series [36]. Consequently, other 

methods, such as the Lomb–Scargle periodogram and 

methods based on wavelet transforms, are becoming 

popular [37, 38]. In this study, the PSD of the heartbeat RR 

interval was calculated using five PSD estimation methods, 

including Welch’s method [39]. The high-frequency (HF) 

band (0.15–0.4 Hz) component of the PRV reflects the 

respiratory sinus arrhythmia affected by respiratory and 

parasympathetic activity. Meanwhile, the LF band 

(0.04–0.15 Hz) component represents the Mayer wave 

originating from both sympathetic and parasympathetic 

activity. Finally, the integral value of HF (aHF) and LF 

(aLF) in the PSD, the percentage of HF (pHF) and LF 

(pLF) in the entire PSD, the normalized values using only 

HF (nHF) and LF (nLF), and the ratio of LF to HF (LF/HF) 

were used as features. 

4.4. EEG Features 

Figure 5 shows the EEG electrode distribution of the 

international 10-20 system. EEG signals were analyzed 

with the EEGLAB toolbox [40]. First, EEG signals were 

digitally band passed to 1–40 Hz to eliminate noise from 

the power source. Next, EEG artifacts were corrected by 

Winkler et al.’s method [41] using independent component 
analysis. Thereafter, channels with excessive artifacts were 

interpolated. Remaining artifacts were removed manually. 

 It is known that the PSD of EEG signals in various bands 

is correlated with emotion. An FFT algorithm was applied 

to all extracted artifact-free EEG signals. The PSD was 

obtained at a 2-Hz sampling rate with a moving window of 

30 sec and a step of 0.5 sec. The logarithms of the PSD 

from the theta (4 Hz < f < 8 Hz), alpha (8 Hz < f < 12 Hz), 

beta (12 Hz < f < 30 Hz), and gamma (30–40 Hz) bands 

were extracted to serve as features. In addition, alpha waves 

in the prefrontal cortex are more dominant in the relaxed 

state and alpha activity was associated with brain inactivity. 

Thus, the alpha band is a reasonable indicator of the arousal 

state of a person. Concretely, the arousal level was 

computed as follows: 

 . (1) 

The asymmetry of the two cortical hemispheres was used 

to determine the valence level. Davidson has demonstrated 

that the left frontal area is associated with more positive 

effects and memories, and the right hemisphere is more 

involved in negative emotions [42]. The F3 and F4 

positions are used most often for looking at this alpha 

activity related to valence, as they are located in the 

prefrontal lobe, which plays a crucial role in emotion 

regulation and conscious experience. Valence values were 

computed by comparing the alpha power α in channels F3 
and F4. Concretely, the valence level was computed as 

 . (2) 

Arousal and valence computation were adapted from 

Ramirez et al.’s method [43], where the authors show that 
the computed arousal and valence values indeed contain 

meaningful emotional information. In total, the number of 

EEG features of a trial with 16 electrodes and 4 bands is 16 

× 4 + 2 = 66 features. 

 



 

 

 

Figure 5. Electrode distribution. 

 

5. Dimensional Affect Prediction 

5.1. Extreme learning machines 

Because the ELM algorithm [44] can be easily 

implemented, it tends to have the smallest training error, 

obtain the smallest norm of weights with good 

generalization performance, and run extremely fast. These 

advantages differentiate it from other popular single hidden 

layer feedforward neural networks. Further, it tends to have 

good generalization performance for feedforward neural 

networks. Given the input data  and 

target data , the hidden layer is 

represented as follows: 

 
 

(3) 

where  is the activation function,  is the random 

weight between the input layer and the hidden layer 

generated by random numbers, and  is the bias. The 

hidden layer is given as . When the 

weight between the hidden layer and the output layer is W, 

the output Y is given as follows: 

 
 

(4) 

To find W, the problem can be stated as follows: 

 
 

(5) 

This is a least-squares optimization problem. 

5.2. Evaluation Metrics 

Finding optimal evaluation metrics for dimensional and 

continuous emotion prediction and recognition remains an 

open research issue [45]. In this study, the accuracy was 

evaluated using Pearson’s correlation coefficient (COR) 
and the CCC [46]. 

COR is an indicator of the strength of the linear 

relationship between prediction and ground truth. Let  be 

the prediction and  be the ground truth. COR is defined as 

follows: 

 

 

 
(6) 

where  is the standard deviation and COV is the 

covariance. 

The CCC is a statistical measure of the agreement 

between the values of two equally sized vectors  and . It 

combines COR with the squared difference. The CCC is 

defined as follows: 

 

 

 
(7) 

where  is the COR between the two vectors, is the 

variance of the respective vector, and  is its mean value. 

The CCC can have values between -1 and 1, where 1 means 

a strong similarity and -1 means dissimilarity. Unlike the 

COR, the CCC penalizes predictions that are well 

correlated with the ground truth but shifted in value in 

proportion to their deviation. This property makes the CCC 

metric meaningful for the evaluation of our 

two-dimensional emotion labels, that is, . The 

correlation between the predicted emotion and the true 

emotion is considered along with the prediction value’s 
divergence from the real value. 

 

6. Experimental Results and Discussion 

Continuous detection of emotions is performed by an 

ELM using the calculated features and annotations 

recorded continuously. These annotations were normalized 

to [-1 1] for use as the ground truth. In addition, 

feature-level fusion was used to fuse the functions of 

multimodal processing. To create a generalizable model, 

learning and regression were carried out by K-fold cross 

validation. In the K-fold cross validation, the sample group 

is divided into K parts. One of them is a test case and the 

remaining K – 1 parts are training cases. In cross validation, 

each sample group is verified K times as a test case. The 

average of the K evaluations is obtained in this way, and a 

single estimate is calculated. During the validation, 

parameter K was 10. 

The COR results of continuous emotion recognition are 

shown in Figure 6. The CCC results are shown in Figure 7. 

An example of continuous detection of valence using FE, 

pupil diameter, and HR is given in Figure 8. Based on the 

results in Figures 6 and 7, we can make three points. 

First, we discuss the overall estimation result of arousal 

and valence. As a general tendency, the degree of valence 

was more accurately estimated than the degree of arousal. 

This suggests that the ground truth labels due to subjective 

dependence affect the estimation accuracy. Because the 

subjects carefully and quietly watch the movie clips during 

the experiment, it is difficult for the subject to rate arousal. 

Nevertheless, it is presumed that the evaluation of valence 

may be intuitive and easy to perform. 



 

 

 Second, we discuss the estimation results of each modal. 

The fusion of contactless measurement modalities achieved 

better results than those of methods using conventional 

EEG and FE separately. This result suggests that the 

multimodal approach is effective. In addition, when 

comparing single physiological signal features, EEG 

achieved better arousal measurement results than did HR or 

pupil diameter. However, the HR and pupil diameter 

measurement achieved better results than did EEG in terms 

of valence. This is consistent with Ikeda et al.'s finding that 

EEG is suitable for estimating human cognitive arousal, 

while HR is suitable for estimating the autonomic nervous 

state (pleasant or unpleasant) [47]. But we also have to pay 

attention to the credibility of the EEG signal. Mohammad et 

al. [12] point out that EEG signals can be affected by the 

contamination of facial muscle activity. We will investigate 

this aspect further in the future. 

 Third, we discuss the comparison with other work. A 

direct comparison of the performance to the other works 

[11, 12, 13, 14] is not possible due to the nature of the 

database and the experimental environment. In particular, 

the methods for attaching ground truth labels differs greatly 

in terms of subjective evaluation by subjects and objective 

evaluation by annotators. In this study, we were affected by 

the problem of subjectivity. However, as shown in Figure 6, 

we were able to capture the tendency of emotional change 

in some cases, so it may be possible to improve accuracy by 

collecting more data to reduce the effects of individual 

differences. 

 

 

Figure 6. COR results of continuous emotion recognition. FE = 

facial expression, P = pupil, and HR = heart rate. 

 

Figure 7. CCC results of continuous emotion recognition. 

Abbreviations are the same as in Figure 6. 

 

Figure 8. Example of continuous detection of valence using facial 

expression, pupil diameter, and heart rate. In this case, increased 

discomfort due to movie stimulus is tracked. 

7. Conclusion and Future Work 

We proposed a method to continuously detect emotions 

from FE and physiological responses. Our contributions are 

discussed in this section. First, measurement with 

contactless features was more accurate than measurement 

with EEG features, indicating the effectiveness of 

contactless measurement. It is more realistic to use a 

camera for engineering applications because EEG is 

sensitive to noise. Next, compared with measurement using 

only FE, the combination of multiple physiological signals 

provided a more accurate estimation, indicating the 

effectiveness of multimodal analysis. 

Future tasks are to further improve the method’s 
accuracy. Analyzing a large number of subjects using 

crowdsourcing can be expected to help reduce the influence 

of self-assessment bias [15, 17]. Alternatively, we will 



 

 

consider using objective measures of emotions with brain 

waves as ground truth [48]. The continuously recorded 

observations should be standardized to improve the ground 

truth. 
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