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SUMMARY The aim of this work is to develop an efficient medical
image segmentation technique by fitting a nonlinear shape model with pre-
segmented images. In this technique, the kernel principle component anal-
ysis (KPCA) is used to capture the shape variations and to build the non-
linear shape model. The pre-segmentation is carried out by classifying the
image pixels according to the high level texture features extracted using the
over-complete wavelet packet decomposition. Additionally, the model fit-
ting is completed using the particle swarm optimization technique (PSO) to
adapt the model parameters. The proposed technique is fully automated, is
talented to deal with complex shape variations, can efficiently optimize the
model to fit the new cases, and is robust to noise and occlusion. In this pa-
per, we demonstrate the proposed technique by implementing it to the liver
segmentation from computed tomography (CT) scans and the obtained re-
sults are very hopeful.
key words: model fitting, image segmentation, kernel methods, prticle
swarm, shape priors

1. Introduction

The image segmentation is the first and essential process in
many medical applications including analysis of anatomi-
cal structure [1], lesion detection [2], volume measurement
and surgical planning [3]. This process is traditionally per-
formed by radiologists or medical specialists who use their
knowledge and experience to manually trace the objects on
each image or slice. In almost all of these applications, the
medical specialists have to access a large number of images
which is a tedious and a time consuming process. Although
the automatic segmentation is helpful in these applications,
it is a demanding issue which needs a considerable amount
of knowledge inclusion.

Many researchers make an effort to develop semi-
automatic and automatic medical image segmentation tech-
niques and several articles have been presented in the liter-
ature. Some of these techniques interpret the image as an
undirected and weighted graph, and compute the minimal
cost path between user defined seed points [4]. Although
this class of segmentation techniques gives the user a full
control over the segmentation process, it still requires the
user interaction time and the quality of segmentation result
is greatly depends on the skills of the operator. Another
class of these techniques depends on the gray levels analy-
sis and a simple or iterative thresholding to create a binary
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images that are usually further processed by morphologi-
cal operators to separate the attached organs [5]. The tech-
niques of this class are likely to fail when the gray levels
of different organs are similar or when patients with com-
pletely different gray level characteristic are processed. To
overcome these limitations, a group of researchers used the
learning techniques as the neural network to learn the gray
level characteristics corresponding to different tissues [6].
Unfortunately their techniques are keeping some of the orig-
inal limitations and they recommend the practice of basic
anatomical knowledge.

Due to the limitation of the previously mentioned tech-
niques, more advanced techniques incorporate the prior in-
formation captured from a set of training cases in the seg-
mentation process [7]. These techniques capture and de-
scribe prior information regarding the shape, size and po-
sition of each organ. In order to achieve this goal the re-
searches employ deformable models, statistical shape mod-
els, and probabilistic atlases [8]. However these techniques
surmount the main limitations of previously mentioned tech-
niques they produce their own limitations as the difficulty
to build a proper training set, the challenge of representing
all the shape variations, and the difficulty to get the optimal
model parameters which fit the new cases. Moreover differ-
ent approaches to medical image segmentation employ the
level set method [9] with some novel speed functions. These
methods propagate the implicitly defined surface toward the
object boundary according to local image characteristic and
the past front history [10]. Though these techniques are able
to produce a reasonable segmentation, the reliance on im-
age information alone often lead to inaccurate segmentation
results and the incorporation of prior knowledge and the pa-
rameters adjustment can greatly affect their accuracy .

The incorporation of shape priors with the segmenta-
tion techniques has been shown to be an effective way for
knowledge inclusion and it is leading to more robust seg-
mentation [11]. Many researchers integrate linear shape pri-
ors with level set methods to control the contour evolution
process [12]. However these approaches are able to cap-
ture small variations of the shape of an object, they lead to
unrealistic shape priors when the object undergoes complex
or nonlinear deformations. In [13], Y. Rathi, et. al proved
that the nonlinear shape prior obtained from kernel PCA
(KPCA) space is more realistic and outperform the linear
one. Additionally in [14], S. Dambreville, et. al incorpo-
rated the nonlinear shape model into a level set framework.
However these techniques incorporate nonlinear shape pri-
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ors, they depend on the variational level set method and they
can be trapped in a local minima and a manual initialization
is very essential. Furthermore, they rely on the image mo-
ments only which is unsatisfactory in the case of complex
textures.

Therefore in this work, we propose an efficient
automatic segmentation technique by combining texture
features-based classification and nonlinear shape model op-
timization. In this technique, the high level texture features
extracted using the over-complete wavelet packet decompo-
sition are used to accurately define the different tissues and
to perform a preliminary segmentation. Additionally, the
kernel PCA (KPCA) is utilized to capture the shape vari-
ations and to build a nonlinear shape model from a set of
manually segmented images. The particle swarm optimiza-
tion algorithm (PSO) is then applied to efficiently obtain the
parameters of the shape model and to accurately fit it with
the pre-segmented images.

After this introduction, in Section2, the basic PSO al-
gorithm is explained. In Section3, we briefly describe the
KPCA and how it is used to obtain the nonlinear shape pri-
ors. The texture prior extraction will be discussed in Sec-
tion4. In Section5, the proposed PSO segmentation frame-
work will be presented. The experimental results will be
shown in Section6 and the paper will be concluded in Sec-
tion7.

2. Particle Swarm Optimization (PSO)

PSO is a population based stochastic optimization technique
founded by Kennedy and Eberhart in 1995 [15]. In this algo-
rithm they mimic the social behavior of bird flocks search-
ing for food to produce computational intelligence. There
are many similarities between PSO and the other evolution-
ary computation techniques, but the PSO algorithm supports
the idea of individuals cooperation instead of competition
used in the other techniques and that provides a better search
methodology and reduces the dependency on the parameters
initialization. Additionally, it can achieve better results in a
faster and cheaper way compared with other evolutionary
computational techniques as proved in [16] and as we will
clarify in the experimental results.

In PSO, a population or swarm of individuals − parti-
cles − are separated over the search space of some problem.
Each particle represents a complete solution of this problem
and it evaluates the objective function at its location. Addi-
tionally, the particle moves in the search space under the in-
fluence of its behavior and the whole swarm behavior. Each
particle in the swarm is defined by three d−dimensional vec-
tors; the current location ~xi, the velocity ~vi and the best posi-
tion it reaches ~pi, where d is the dimensionality of the search
space. The original version of PSO algorithm will be de-
scribed in the following algorithm.

1. The position and velocities are randomly initialized
from the specified range.

2. loop

a. For each particle, evaluate the desired optimiza-
tion fitness function.

b. Compare particle’s fitness evaluation with its
pbesti , where pbesti is the fitness evaluation at
particle’s best location. If current value is better
than pbesti, then set pbesti equal to the current
value, and ~pi equal to the current location ~xi.

c. Identify the particle in the neighborhood with the
best success so far, and assign its index to variable
g.

d. Change the velocity and position of each particle
according to the following equations.

~vt+1
i = ~vt

i + ~U(0, α1) ⊗ (~pi − ~xi)

+ ~U(0, α2) ⊗ ( ~pg − ~xi)
(1)

~xt+1
i = ~xt

i + ~vt
i, (2)

where

• t : reefers to the iteration index.
• ~U

(
0, α j

)
, j = 1, 2 : represents a vector

of random values uniformly distributed in[
0, α j

]
.

• vi is kept within the range [−Vmax,+Vmax].

e. If a criterion is met (sufficiently good fitness or
maximum number of iteration), exit loop.

3. save the global best position as the problem solution.

This original PSO algorithm has been received many en-
hancements from its appearance till now [17]. The PSO
with inertia weight [17], [18] is one from these enhance-
ments which provides better control on the search space,
so we are interested in it during this work. The following
equations are the velocity and position update equations of
the PSO with inertia weight.

~vt+1
i = ω~vt

i + ~U (0, α1) ⊗
(
~pi − ~xi

)
+ ~U (0, α2) ⊗

(
~pg − ~xi

) (3)

~xt+1
i = ~xt

i + ~vt
i, (4)

where, ω is the inertia weight
The researchers have found that the large value of ω al-

lows the particles to perform extensive exploration and the
small value ofω increases the chance to get local optima. So
they have found that the best performance could be achieved
by using a large value of ω (e.g., 0.9) at the beginning and
gradually decrease it until reach another small value of ω. in
addition, the velocity of each particle is kept within a speci-
fied range of [−maximumvelocity,maximumvelocity].

3. Nonlinear Shape Priors

The nonlinear shape priors have been proven to be an ef-
ficient way for the representation of complex object defor-
mation [13]. Additionally, the KPCA has been shown as a
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predominant tool to extract nonlinear structure from a data
set [14]. In the following subsections, we will briefly review
the KPCA and how it is utilized to form the shape priors.

3.1 Kernel principle component analysis (KPCA)

To extract the nonlinear structure from a complex dataset,
we have to map this dataset from an input space I to a fea-
ture space F through a nonlinear function ϕ. Usually, the
dimension of this mapping is very high and may be infi-
nite and it increases the computational cost. Therefore, the
KPCA benefits from the kernel trick to perform PCA in the
feature space without explicitly mapping the dataset [19].
The kernel is a function k (., .) such that, for all data points
xi, the kernel matrix K (i, j) = k(xi, x j) is symmetric posi-
tive definite. In addition, the kernel function gives the in-
ner product between two points in the feature space, i.e.,
k
(
xi, x j

)
=

〈
ϕ(xi), ϕ(x j)

〉
.

Let τ = {x1, x2, , xN} be a set of training data. The ker-
nel trick can be used to obtain the eigenvectors in the feature
space from the following Eigen decomposition:

HKH = UΣUT , (5)

where H is the centering matrix defined as H = I − 1
N 11T , I

is the N×N identity matrix, 1 = [1, 1, . . . , 1]T is N×1 vector,
U = [a1, a2, . . . , aN] with ai = [ai1, ai2, . . . , aiN] is the matrix
containing the eigenvectors and Σ = diag (λ1, λ2, . . . , λN)
contains the corresponding eigenvalues. Denote the mean
of the ϕ−mapped data by ϕ̄ = 1

N
∑N

i ϕ(xi) and as described
in [13], [14], [19], the centered map ϕ̃can be defined as:

ϕ̃ (xi) = ϕ (xi) − ϕ̄ (6)

The kth orthonormal eigenvector of the covariance matrix in
the feature space can then be computed as:

Vk =

N∑
1

aki
√
λk
ϕ̃(xi) (7)

In addition, the projection of the ϕ−image of a test point
x onto the subspace spanned by the first n eigenvectors is
given by:

Pϕ(x) =

n∑
k=1

βkVk + ϕ̄, (8)

where, βk is the projection of ϕ(x)onto the kth component
and it is computed as:

βk =
1
√
λ

N∑
i=1

akik̃(x, xi), (9)

k̃(., .) is the centered kernel function and it is given by:

k̃(x, y) = 〈ϕ̃(x), ϕ̃(y)〉

= k(x, y) −
1
N

1T kx −
1
N

1T ky +
1

N2 1T K1
(10)

with kx = [k(x, x1), k(x, x2), . . . , k(x, xN)]T

3.2 Shape Priors Using KPCA

As a first step in the shape modeling, a set of CT slices must
be segmented manually and its corresponding level set have
to be formulated. In order to simplify this process, we built
an interactive system that allows the medical doctor to seg-
ment the objects by selecting some points around it and then,
the cubic Spline interpolation [20] is employed to estimate
the segmenting curve from these points as shown in Fig-
ure 1 (a). Additionally, the level sets which describe the
segmented objects are formulated according to the follow-
ing procedure.

1. Construct a binary mask from the segmenting curve
with the value of 1 inside the curve and the value of
0 outside it.

2. Use the binary mask generated in the previous step to
generate a mask with the value of -1 inside the object
and the value of 1 outside it. This mask is regarded as a
sign function and denoted as s as shown in Figure 1 (b).

3. Compute the Euclidian distance transform between
each pixel and the segmenting curve and denotes it as
D as shown in Figure 1 (c).

4. Formulate the level set function as Ψ(x, y) = s(x, y) ·
D(x, y) as shown in Figure 1 (d).

Furthermore, the process of shape modeling is completed
according to the following algorithm:

1. Load the N level set functions Ψi(x, y), i = 1, 2, . . . ,N
which had been constructed from the training images .

2. Constructing a column vectors ψi, i = 1, 2, . . . ,N con-
sisting of M samples of each Ψi, M = m1 × m2 is the
image size,by stacking the m2 columns of Ψi.

3. Defining the shape matrix S as S = [ψ1, ψ2, . . . , ψN].

4. Using the Gaussian kernel k
(
ψi, ψ j

)
= e−

d2(ψi ,ψ j )

2σ2 , with
σ2 = 1

N
∑N

i=1 min j,i d2(ψi, ψ j) to build the kernel matrix
K.

5. Applying KPCA as described in the previous section
and selecting the eigenvectors that have eigenvalues
greater than one as a shape representation.

4. Texture Priors

We utilize the over-complete wavelet packet transform to
extract the high-level feature vectors for each foreground
pixel in the training images. As illustrated in Figure 2 the
over-complete wavelet packet transform does not perform
the down-sampling as in standard wavelet packet transform,
so it ensures the translation invariance property which is in-
dispensable for textural analysis. In addition, it provides ro-
bust texture features at the expense of redundancy [21]. Fea-
ture extraction using over-complete wavelet packet trans-
form can extract all bandpass information about the texture.
In this work, we extract the wavelet packet feature set ac-
cording to the following procedure:
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Fig. 1 Manual segmentation and level set formulation (a) the estimated
curve, (b) the sign function s, (c) the distance function D, and (d) the signed
distance function Ψ.

1. Apply a two-level over-complete wavelet packet de-
composition on the input image.

2. At level−1, select the four sub-bands as feature sub-
images.

3. At level−2, in each sub-channel, select the sub-band
with the maximum variance to be a feature sub-image.

4. Calculate the local energy around each pixel of the fea-
ture sub-images as

E(x, y) =
1

2m + 1

m∑
i=−m

m∑
j=−m

F (x + i, y + j)2, (11)

where, F(x + i, y+ j) is the wavelet coefficient of a fea-
ture sub-image in (2m + 1)× (2m + 1) window centered
at pixel (x, y).

5. Construct the feature vectors of each pixel in the im-
age from the energy of the corresponding feature sub-
images.

After the construction of the high level feature vectors, we
assign a label for each pixel to indicate whether this pixel
is a desired object pixel or not and finally, we use the linear
fisher discriminate algorithm [22] to build the textural prior
model. The energy, l2 − norm, of each feature sub-image is
a favorable feature of texture because it indicates the dom-
inant spatial-frequency channels of the original image and
it leads to better classification results than the spatial do-
main methods as shown in Figure 3. Linear fisher discrim-
inate algorithm is a classification method that project high-
dimensional data onto a line and performs classification in
this one-dimensional space. This projection maximizes the
distance between the means of the two classes while mini-
mizing the variance within each class.
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Fig. 2 Wavelet packet decomposition of an image into four sub-bands.
(a) The standard decomposition, (b) The over-complete decomposition. H
and L denote high-pass and low-pass filter respectively and ↓ 2 means a
down-sampling by 2.

Fig. 3 Sample classification results, (a) using wavelet texture feature set
and (b) using Laws texture.

5. PSO-Based Segmentation

In order to segment a new image, its wavelet packet based
feature set is extracted and each foreground pixel in this im-
age is classified as a desired object pixel (true) or undesired
object pixel (false) according to the prior textural model as
shown in Figure 4. This classification process is carried out
by using the linear fisher discriminate algorithm. Finally,
this stage is completed by applying the PSO algorithm [17]
to get the level set function that truly segments the image as
shown in Figure 5 and described in the following sections.

5.1 The Model Description

Each particle in the PSO population consists of the set of pa-
rameters that control the shape and the pose parameters of
the segmenting curve. In this framework, the level set func-
tion φ(x, y) that implicitly represents the segmenting curve
is defined as the pre-image of feature vector υ =

∑l
i=1 wiαi, l
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Fig. 4 Preliminary segmentation of sample images: the foreground is the
pixels classified as desired object pixels.

 

Load a new Image 

Classify the image pixels as a desired 
object or not according to the texture priors 

Load the Nonlinear Shape Priors (Obtained 
from KPCA)  

Adapt the shape model using the PSO 
Algorithm and the classified image 

Segment the image using the adapted 
model and display the results 

Fig. 5 The proposed segmentation technique

is the number of KPCA principle components, αi and wi,
i = 1, 2, . . . , l are the normalized KPCA principle compo-
nents and its weights respectively. The pre-image of this
feature vector is computed according to the direct method
proposed in [23].

Furthermore, we consider the pose parameters, a, b
for transition, h for scaling and θ for rotation, which in-
corporated in this framework using an affine transform.
According to above considerations, each individual, parti-
cle, P in the PSO population is defined as P = [(wi, i =

1, 2, , l), a, b, h, θ] and it represents a segmenting curve.
The fitness of each particle in this work represents how

the corresponding curve segments the image. Accordingly
in the proposed framework, we tend to maximize the fitness
function used in [24]. This fitness function is formulated as:

FT = 500 (A + (1 − B)) , (12)

where, A is the fraction of pixels inside the segmenting curve
that are labeled “true” and B is the fraction of the pixels out-
side the segmenting curve that are labeled “true”. The max-
imization of this fitness function means that more desired
pixels are gathered inside the segmenting curve.

5.2 The PSO algorithm configuration

In this work, we are employing the PSO algorithm with in-
ertia weight described in Section1. The PSO algorithm in-
cludes an inertia term and acceleration constants which give
us more control on the segmenting curve. The PSO algo-
rithm configuration is shown in Table1 and the curve pa-
rameters configuration is provided in Table2. The parame-

ters in Table1 control how fast the PSO converge to the cor-
rect segmentation and make the balance between the global
and local search, however the PSO is robust to initialization.
The parameters in Table2 control the shape formulation and
its transformation. Among these parameters, wi have fixed
ranges and the other parameters are selected practically ac-
cording to the characteristic of the cases and the selection
of these parameters have to guarantee that all possible vari-
ations and transformations are considered.

5.3 The PSO Algorithm Implementation

After we configure the PSO algorithm and adjust the curve
parameters according to the desired object, we carry out the
segmentation process according to the following sequence:

1. Initialize the curve parameter randomly from the range
specified in Table1.

2. Create the level set function from the curve parameters.
3. Segment the image by all segmenting curves derived

from the level set.
4. Measure the fitness of each curve by computing the fit-

ness function described in Section5.1.
5. Determine the best segmenting curve and the best seg-

mentation results for each curve.
6. If the best curve is not changed for more than 30 it-

erations, produce the segmentation results; else go to
Step-6.

7. Update the curves parameters according to the PSO al-
gorithm equations and go to Step-2.

6. Experimental Results

In this work, we use a portal phase of computed tomogra-
phy (CT) images of resolution 512× 512 pixels and of 1mm
slice interval to perform two experiments of liver segmenta-
tion. The used datasets contain normal cases as well as cases
with liver abnormalities, tumors and cysts. In the first ex-
periment, a set of five CT images of different patients were
used. Each CT image consists of about 150 slices stacked to-
gether and the liver fully appears in about 100 slices. In this

Table 1 PSO algorithm configuration

Swarm size (the number of segmenting curves) 25
The maximum number of epochs 100

Local best influence 2
Global best influence 2
Initial inertia weight 0.9
Final inertia weight 0.4

Epoch when inertial weight at final value 70

Table 2 Curve parameter configuration

Parameter Name Parameter Rang Maximum Velocity
wi, i = 1, . . . , l −

√
λi →

√
λi 0.5

a, b −10→ 10 2
h 0.5→ 2 0.5
θ −90→ 90 10
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experiment, two datasets were extracted and used; dataset1
consists of 34 slices of one patient with low shape varia-
tions and dataset2 consists of 33 slices of the same patient
with high shape variations. These slices were manually seg-
mented to build the nonlinear shape prior and textural prior
models as described in Section2 and Section3. We select
8 and 10 principle modes to represent the shape variation
in dataset1 and dataset2 respectively. Figure 6 shows that
every principle mode expresses a variation in some object
parts. After we had built the shape and textural priors, we
employed the proposed PSO segmentation technique on a
set of slices of the patient used in the training stage and a
set of novel slices for other patients. The resulting images
shown in Figure 7 and Figure 8 illustrate the effectiveness
of the proposed technique in liver segmentation from the CT
images.

In the second experiment, a set of ten CT images of dif-
ferent patients was used for cross validation; nine patients
were used for training and one patient was used for test-
ing. Each CT image consists of about 170 slices stacked
together and the liver fully appears in about 140 slices. In
this experiment, a set of key frames were extracted from dif-
ferent patients at interval of 5 slices and all extracted frames
were manually segmented. The level sets constructed from
corresponding frames were used to build multi-shape and
texture models. In this work, we use 27 slices to build each
model and select 7 principle modes to represent the shape
variations. Sample results of this experiment are shown in
Figure 9 and Figure 10.

To validate the superiority of the proposed segmenta-
tion technique, five competitive techniques were utilized to
segment the liver in the same set of slices and all results were
compared. The first implemented technique is the active
contour without edges [25] with a manual initialization in-
side the liver, the second technique performs the segmenta-
tion using the wavelet packet decomposition feature set and
the fisher linear discriminate algorithm, the third technique
utilizes the genetic algorithm (GA) to fit the pre-constructed
shape model as proposed in [24], the fourth technique in-
corporate the linear shape priors of [12] in the segmentation
framework, and The fifth technique is the technique pro-
posed in [14] which incorporates nonlinear shape model and
intensity-based model and it requires a manual initialization.
Figure 11 shows the effectiveness of the proposed technique
in the case of high shape variations , Figure 12 shows sample
results of GA-based technique and Figure 13 demonstrates
sample results of the fifth competitive technique. As shown
in Figure 13, the balance between the shape model and the
intensity-based model greatly influences the final results and
keeping this balance manually is very difficult in the case of
abdominal CT images. The goodness of fitness, G, of all
techniques were computed for all datasets and compared in
Table3, Table4 and Table5.

To calculate the goodness of fitness, we generate two
binary masks to represent the manual and the computerized
segmentation results. These masks have a value of 1 inside
the object and a value of 0 outside. Then the goodness of

Fig. 6 The first 10 principle variation modes of dataset2,
√
λiαi, i =

1, 2, . . . , 10 from left to right and up to down, the black contour represents
the shape boundary.

Fig. 7 Samples of the proposed technique results,first experiment-
dataset1, (a) images for the patient used in training, (b) images of the other
patients - the manual segmentation on the upper row and the automatic
segmentation on bottom row.

Fig. 8 Samples of the proposed technique results,first experiment-
dataset2, (a) images for the patient used in training, (b) images of the other
patients - the manual segmentation on the upper row and the automatic
segmentation on bottom row.

fitness is calculated according to the following equation.

G =
|Am ∩ Aa|
|Am ∪ Aa|

, (13)

where, Am represents the area of manually segmented object
and Aa represents the area of automatically segmented ob-
ject. A score of 1 represents a perfect match with the manual
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Fig. 9 Samples of The proposed technique results, the second experi-
ment, on test slices extracted from the patients used in the training stage,
the manual segmentation on the upper row and the results on the bottom
row.

Fig. 10 Samples of The proposed technique results, the second experi-
ment, on novel test slices extracted from the test patients, the manual seg-
mentation on the upper row and the results on the bottom row.

Fig. 11 Comparison of the results of incorporating linear and nonlinear
shape priors in the segmentation framework, (a) manual segmentation, (b)
nonlinear shape priors and (c) linear shape priors.

segmentation.

7. Conclusion and Futute Work

In this work, the high level features extracted using the over-

Fig. 12 Samples of genetic algorithm-based segmentation technique re-
sults, (a) the first experiment, (b) the second experiment, the manual seg-
mentation on the upper row and the results on the bottom row.

Fig. 13 Sample results of the framework proposed in [14], the upper
row is the manual segmentation, the middle row is the best obtained re-
sults using a mixture of 40% of intensity-based model and 60% of shape
model, and the bottom row is the results obtained using a mixture of 50%
of intensity-based model and 60% of shape model, the black curve is the
manual initialization and the white one is the final evolution result.

Table 3 Goodness of Fitness of the Final Segmentation Results (First
experiment, dataset1).

Segmentation technique Training Patient Test Patients
The proposed Technique 0.95 0.88

Linear shape priors 0.94 0.83
Active contour without edges 0.70 0.75
Wavelet packet decomposition 0.52 0.45

GA-based technique 0.84 0.80
The technique proposed in [14] 0.94 0.85

complete wavelet decomposition allows the technique to ac-
curately discriminate the desired tissue. Also, the incorpora-
tion of nonlinear shape priors increases the ability to capture
the desired object accurately. In addition, the utilization of
the particle swarm optimization algorithm to adapt a region
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Table 4 Goodness of Fitness of the Final Segmentation Results (First
experiment, dataset2).

Segmentation technique Training Patient Test Patients
The proposed Technique 0.92 0.88

Linear shape priors 0.75 0.73
GA-based technique 0.80 0.75

The technique proposed in [14] 0.90 0.86

Table 5 Goodness of Fitness of the Final Segmentation Results
(Second experiment).

Segmentation technique Training Patients Test Patients
The proposed Technique 0.96 0.93

Linear shape priors 0.92 0.88
Active contour without edges 0.72 0.74
Wavelet packet decomposition 0.50 0.48

GA-based technique [14] 0.89 0.83
The technique proposed in [14] 0.93 0.90

based level set function eliminates the need for deriving gra-
dient of energy or solving complicated differential equations
and it doesn’t need level set re-initialization. Moreover, the
PSO algorithm can efficiently explore the search space to
converge to the desired object and its parameters can be eas-
ily adapted for any object.

In the future, we intend to enhance this PSO segmenta-
tion technique by employing the parallel PSO algorithm and
utilize it for volume segmentation and visualization and as a
primary step in automatic segmentation of liver tumors.
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