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SUMMARY Despite their usability advantages over traditional authen-

tication systems, biometrics-based authentication systems suffer from in-

herent privacy violation and non-revocability issues. In order to address

these issues, the concept of cancelable biometrics was introduced as a

means of generating multiple, revocable, and noninvertible identities from

true biometric templates. Apart from BioHashing, which is a two-factor

cancelable biometrics technique based on mixing a set of tokenized user-

specific random numbers with biometric features, cancelable biometrics

techniques usually cannot preserve the recognition accuracy achieved us-

ing the unprotected biometric systems. However, as the employed token

can be lost, shared, or stolen, BioHashing suffers from the same issues

associated with token-based authentication systems. In this paper, a re-

liable tokenless cancelable biometrics scheme, referred to as BioEncod-

ing, for protecting IrisCodes is presented. Unlike BioHashing, BioEncod-

ing can be used as a one-factor authentication scheme that relies only on

sole IrisCodes. A unique noninvertible compact bit-string, referred to as

BioCode, is randomly derived from a true IrisCode. Rather than the true

IrisCode, the derived BioCode can be used efficiently to verify the user

identity without degrading the recognition accuracy obtained using original

IrisCodes. Additionally, BioEncoding satisfies all the requirements of the

cancelable biometrics construct. The performance of BioEncoding is com-

pared with the performance of BioHashing in the stolen-token scenario and

the experimental results show the superiority of the proposed method over

BioHashing-based techniques.
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1. Introduction

In today’s world, identity authentication is gaining increas-

ing importance in a growing number of applications in or-

der to combat identity theft and fraud. Unfortunately, tradi-

tional personal authentication systems which rely on some-

thing the user knows, such as passwords and personal iden-

tification numbers (PINs), and/or something the user has,

such as smart cards and USB tokens, suffer from several

inherent limitations. Both tokens and passwords can be eas-

ily forgotten, lost, shared or stolen. On the other hand,

biometrics-based authentication systems, which use physi-

ological and/or behavioral characteristics such as iris, fin-

gerprint and gait for identifying persons, do not suffer from

such limitations. Biometric characteristics are permanently

associated with the user and hence cannot be forgotten, lost

or lent to others. Due to these usability advantages, bio-

metric characteristics are increasingly replacing passwords

Manuscript received January 1, 2008.
Manuscript revised January 1, 2008.
Final manuscript received January 1, 2008.
†The authors are with the Graduate School of Advanced Inte-

gration Science, Chiba University, Chiba-shi, 263-8522, Japan.
a) E-mail: oouda@graduate.chiba-u.jp

DOI: 10.1587/transinf.E0.D.1

and tokens in many security applications [1]. However,

biometrics-based authentication systems also have their own

inherent limitations. Unlike passwords and tokens which

can be easily canceled and replaced if they are lost or stolen,

biometrics cannot be revoked if compromised (stolen by an

imposter). Furthermore, since biometrics can convey sen-

sitive private information about individuals such as disease

and genetic information, their use in personal authentication

raises many privacy concerns [2].

In recent years, several approaches have been sug-

gested to address both revocability and privacy-preserving

issues of biometrics. One of the most promising approaches

that have been proposed to address the abovementioned is-

sues is the “cancelable biometrics” approach [3], [4]. The

concept of cancelable biometrics is based on the notion of

noninvertible transforms that can be applied to true biomet-

ric templates in order to derive multiple protected templates

which can be canceled and replaced in case of compromise.

However, the main challenge for the cancelable biometrics

techniques proposed in the literature is the trade-off between

privacy preservation and recognition accuracy preservation.

It has been shown that this trade-off cannot be resolved with-

out integrating other factors such as tokens or secure pass-

words in the authentication process.

BioHashing [5] is a two-factor form of cancelable bio-

metrics based on iterated inner products between a set of

tokenized user-specific random numbers (TRNs) and the

true biometric features. BioHashing has been successfully

applied to different biometric modalities [5]-[8] and its re-

ported near-to-perfect results have received much attention

[9], [10]. However, the main drawback of BioHashing is

that its claimed performance degrades significantly when an

imposter gains access to a legitimate token and tries to au-

thenticate herself as a legitimate user. In other words, can-

celable biometrics techniques based on BioHashing have the

same limitations associated with traditional token-based au-

thentication systems. Therefore, in order to benefit from the

usability advantages of biometrics and protect users’ privacy

at the same time, new template protection methods that rely

solely on biometric templates are desired.

Addressing this problem, this paper presents a novel

tokenless cancelable template protection scheme, called

BioEncoding, for protecting IrisCodes. Using the proposed

method, a large number of protected templates can be de-

rived from a true IrisCode by grouping bits in the IrisCode

into fixed-sized groups and then mapping them randomly

to single bit values to constitute a compact protected bit
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string, called BioCode. Rather than the true IrisCode, the

generated BioCode can be used efficiently to verify the user

identity without introducing significant performance degra-

dation. Although BioEncoding also makes use of a random

sequence in the transformation process, no token is needed

to store that sequence because the transformation method

relies on the user’s IrisCode much more than the random

sequence. That is, unlike BioHashing, the same random

sequence can be used with all users without deteriorating

the recognition performance. In addition to preserving the

recognition accuracy, BioEncoding satisfies all the require-

ments of cancelable biometrics construct.

The rest of this paper is organized as follows. In Sec-

tion 2, we briefly review the current state of biometric tem-

plate protection techniques focusing on cancelable biomet-

rics and BioHashing. In Section 3, the design details of

BioEncoding are described. In Section 4, the diversity and

noninvertibility properties of BioEncoding are discussed.

Sections 5 presents a set of experiments for evaluating the

recognition performance of BioEncoding and compares it

with results obtained using BioHashing in the stolen-token

scenario. Finally, conclusions are drawn in section 6.

2. Biometric Template Protection

In the last few years, the issue of protecting biometric tem-

plates has gained a great deal of attention from both the bio-

metric and cryptographic research communities, and many

different approaches have been proposed to address the as-

sociated revocability and privacy concerns. Generally, tem-

plate protection schemes that have been proposed in the lit-

erature so far can be broadly classified into two main cat-

egories [11]: biometric cryptosystems and cancelable bio-

metrics schemes. Biometric cryptosystems may be further

divided into two subcategories: key generation schemes and

key binding schemes. Key generation schemes [12], [13]

seek to derive cryptographic keys from user’s biometric fea-

tures directly. The main drawback of such schemes lies in

the difficulty of generating exact error-free identifiers from

noisy biometric features with high key entropy [11]. On the

other hand, the goal of key binding schemes is to bind cryp-

tographic keys with biometric features in such a way that

makes it impossible to recover the key unless the true tem-

plate is presented during authentication [14], [15]. However,

the performance of key binding schemes may be affected

due to the introduction of error correction schemes, which

are necessary for key retrieval.

It is worth noting that although both key generation

schemes and key binding schemes provide protection to bio-

metric templates, their original objective is to secure cryp-

tographic keys using biometric features. That is, although

biometric cryptosystems preserve users’ privacy, they are

not designed to provide revocability [11]. Since the main

focus of our work is to deal with the privacy and revocabil-

ity issues of biometrics-based authentication systems, our

proposed method does not fall under this category.

On the other hand, the main objective of cancelable

biometrics is to generate several revocable identifiers from

a given biometric template. The concept of cancelable bio-

metrics, firstly proposed by Ratha et al. [3], is based on the

application of intentional, repeatable distortions of a bio-

metric signal using a chosen one-way transformation func-

tion. In general, a practical cancelable biometric scheme

should fulfil the following requirements: [11], [16]:

Noninvertibility It should be impossible, or at least com-

putationally very hard, to obtain the original unpro-

tected template from the protected one.

Revocability If a protected template is compromised, it

should be possible to reissue a new protected template

from the same original unprotected template and re-

voke the compromised one.

Diversity In order to prevent cross matching across

databases, the cancelable biometrics scheme should be

able to generate a large number of distinct protected

templates from the same biometric signal so that differ-

ent identities can be used for the same user in different

applications.

Accuracy The cancelable biometrics scheme should not in-

troduce significant degradation in the recognition per-

formance of the unprotected biometric system.

Satisfying all of these requirements simultaneously is the

main challenge for any cancelable biometrics scheme. Sev-

eral methods that are based on cancelable biometrics con-

cept have been proposed since its introduction. For fin-

gerprint authentication, Ang et al. [17] proposed a key-

dependent method for generating cancelable templates for

fingerprints through applying a geometric transform to the

extracted fingerprint features. However, this method can-

not preserve the recognition performance in the transformed

domain. Ratha et al. [18] proposed three different nonin-

vertible transformations (Cartesian, radial and functional)

for protecting fingerprint templates but the poor many-to-

one property of these transforms makes it vulnerable to in-

version attacks [19]. For face authentication, Saviddes et al.

[20] proposed a cancelable approach in which the face im-

ages are convolved with user-specific random kernels. How-

ever, an adversary can simply use deconvolution to recover

the original template if she gained access to the random ker-

nels. For personal authentication based on online signature,

Maiorana et al. [21] proposed a non-invertible transform

that protects on-line signatures signals by applying signal

processing techniques to the acquired templates. However,

this method introduces some degradation in the recognition

accuracy and its renewability capacity is limited. For iris au-

thentication, Jinyu et al. [22] proposed four non-invertible

transforms for generating cancelable iris templates. How-

ever, the matching results of the proposed transforms drop

significantly if the captured iris images are not of high qual-

ity. Moreover, similar to the methods in [17], [18], [20] and

[21], the proposed transforms employ users’ specific keys

for deriving the protected templates from the original ones.

The need for users’ specific keys in such methods makes
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them vulnerable to the same issues associated with the tra-

ditional authentication systems since these keys can be lost,

forgotten or stolen.

2.1 BioHashing

It has been claimed that cancelable biometrics techniques

which are based on the idea of BioHashing have signifi-

cant functional advantages over other cancelable biometrics

schemes and even over unprotected biometrics systems with

respect to the recognition accuracy. Strictly speaking, per-

fect or near to perfect recognition results have been reported

for BioHashing-based techniques applied to many biomet-

ric characteristics[5]-[8]. Generally, BioHashing derives a

compact binary vector b ∈ {0, 1}m, called BioHash, from

the true biometric feature vector x ∈ <n, where m 6 n,

through an iterative computation of the inner products be-

tween a set of tokenized user-specific random numbers and

the biometric vector x. The base BioHashing algorithm may

be summarized as follows:

1. Use a tokenized seed to generate a set of pseudorandom

vectors, {ri ∈ <
n|i = 1, ...,m}.

2. Transform the vectors generated in Step 1 into an or-

thonormal set of vectors {r⊥i ∈ <
n|i = 1, ...,m} using

the Gram-Schmidt ortho-normalization process.

3. Compute the inner product between the biometric fea-

ture vector x and r⊥i (〈x|r⊥i〉), i = 1, ...,m and compute

bi(i = 1, ...,m) as follows:

bi =

{

0 if 〈x|r⊥i〉 6 τ

1 if 〈x|r⊥i〉 > τ

where τ is a predefined threshold.

It is important to note that BioHashing assumes that the

tokenized seed is different among different users and dif-

ferent applications and that is why BioHashing integrates

another independent factor, the token used to store the ran-

dom seed, with the biometric features in the authentication

process. Kong et al. [9] showed that employing the same

seed among different users degrades the verification accu-

racy significantly. This implies that BioHashing can achieve

its outstanding verification performance only under the im-

practical assumption that the employed tokens would never

be lost, shared, or stolen. In other words, the claimed perfor-

mance of BioHashing is not due to the discrimination power

of the biometric features; rather, it is due to the variations

found among different sets of random vectors generated us-

ing different seeds assigned to different users. Under this

scenario, there would no need for combining biometric fea-

tures with the generated random numbers since these num-

bers can serve as perfect passwords [9].

The issues introduced as a result of integrating other in-

dependent authentication factors, such as user-specific pass-

words and/or tokens or cards, with biometric features in

current cancelable biometrics systems are the main motiva-

tion behind our proposed cancelable biometrics scheme. In

BioEncoding, it is not required from the user to memorize

long passwords or to keep tokens or cards in order to authen-

ticate her identity. Rather, the user identity can be verified

safely through matching her unique biometric features with

the cancelable features stored centrally in the system.

3. Proposed BioEncoding Scheme

Among other biometric modalities, iris is considered one of

the most accurate and reliable characteristics that has been

successfully implemented in many real-world applications

with very low false acceptance and rejection rates [23]. The

most accepted and widely used representation of iris bio-

metric is the binary IrisCode presented by Daugman in [24].

IrisCodes are binary strings that represent the texture infor-

mation found in iris patterns. Because our proposed tem-

plate protection method is essentially a one-way transfor-

mation method for protecting binary representations of bio-

metric characteristics, it can be applied directly to IrisCodes

without the need for extracting binary strings from real-

valued biometric templates.

In this section, we describe our proposed template pro-

tection scheme for IrisCodes. First, a general overview of

the proposed method is provided, then the involved steps

are explained in more detail.

3.1 BioEncoding Overview

The steps involved in the enrollment and verification mod-

ules of BioEncoding are shown in Fig.1. The base procedure

of BioEncoding for IrisCodes is comprised of three major

stages: (a) IrisCode generation, (b) consistent bits extrac-

tion, and (c) BioCode generation. The three stages have to

be conducted at both enrollment and verification modules.

As illustrated in Fig.1(a), during enrollment phase, k sample

iris images are captured from the eye being enrolled. Since

the quality of the acquired images may have a significant

impact on the accuracy of the overall system, it should be

ensured that the acquired k images are of sufficient quality

to support iris recognition. In order to determine whether

an acquired image is suitable for use or not, iris image qual-

ity metrics [25] can be employed. The IrisCodes are gener-

ated for the captured images and collected in k binary vec-

tors. Then, the most consistent bits are extracted from the k

IrisCode vectors. The most consistent bits are the bits that

have lower probability of flipping across several IrisCodes

generated from several samples of the same iris compared

to other bits [26]. The extracted consistent bits are collected

in a consistent bit vector C and their positions, in the true

IrisCodes, are collected in a position vector P and stored in

a centralized storage. Finally, bits in C are randomly en-

coded to another set of bits using a secret seed that can be

kept in the centralized storage. The generated random bits

constitute the protected BioCode which is stored in the cen-

tralized storage, instead of the original IrisCode that can be

discarded safely at this point, in order to verify the user iden-

tity during the authentication phase. It is worth noting that
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(a) Enrollment module

(b) Verification module

Fig. 1 Enrollment and verification modules of BioEncoding

although the generated BioCodes are stored in a centralized

database, users’ privacy is assured since it is not possible to

obtain the original codes from the protected ones as will be

discussed in a later section.

At verification, a live iris image is captured from the

person being verified and the true IrisCode for the captured

image is generated as shown in Fig.1(b). Using P, the most

consistent bits are extracted from the generated IrisCode and

collected in a consistent bit vector C′. Using the random

seed stored in the centralized storage and C′, the BioCode

for the user being authenticated is generated and matched

with her stored BioCode. If the matching result exceeds

a predefined threshold, the user is authenticated; otherwise

authentication fails.

3.2 IrisCode Generation

Generally, a typical iris recognition system consists of three

major modules: 1) eye image acquisition, 2) preprocess-

ing, and 3) feature extraction and encoding. Although there

are many approaches to iris recognition [27], the pioneer-

ing approach presented by Daugman [24] is still the most

important. In Daugman’s approach, texture information is

encoded as a binary string called IrisCode, and matching is

done using the normalized Hamming distance which is the

fraction of bits that disagree in the matched IrisCodes. The

normalized Hamming distance (HD) between two IrisCodes

A and B is defined as:

HD(A, B) =
1

n

n
∑

i=1

Ai ⊕ Bi (1)

where Ai and Bi are the ith bits of the IrisCodes A and B,

repectively; n is the length of IrisCodes and ⊕ is the XOR

Boolean operator.

A captured iris image usually contains unwanted re-

gions, such as eyelids, eyelashes and pupil, which need to be

excluded before proceeding to subsequent steps. The goal of

preprocessing is to segment the captured iris image in order

to isolate the iris region and then normalize that region into a

fixed dimension for further processing. In this work, the cir-

cular Hough transform is employed to find the pupillary and

limbic boundaries [28]. The linear Hough transform is used

to isolate eyelids by fitting a line to the upper and lower eye-

lids and then drawing horizontal lines which intersect with

the top and bottom eyelid lines at the edge that is closest to

the pupil. Finally, the eyelashes are isolated using a sim-

ple thresholding technique [29]. After extracting the iris re-

gion from the eye image, it is necessary to normalize the ex-

tracted region into fixed dimensions in order to account for

dimensional inconsistencies between different captured iris

images that result from varying imaging conditions such as

illumination and imaging distance. The rubber sheet model

presented by Daugman [30] is employed to normalize the

Fig. 2 Illustration of iris region normalization.
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Fig. 3 An example of aligning two IrisCodes

extracted region into a fixed two dimensional array where

the number of rows represents the angular resolution and

the number of columns represents the radial resolution. In

this paper, as illustrated in Fig.2, the angular resolution is

set to 240 and the radial resolution is set to 20.

Feature extraction involves extracting the most dis-

criminating iris features by analyzing the normalized iris

texture. Iris texture information is extracted by treating each

row in the normalized iris pattern as 1D signal and convolv-

ing it with 1D Log-Gabor wavelets [29]. For feature encod-

ing, the output of filtering is phase quantized to four levels.

Each filter produces two bits of data for each complex coef-

ficient. The first bit is set to ‘1’ if the real part of the coef-

ficient is positive; otherwise it is set to ‘0’, and the second

bit is set to ‘1’ if the imaginary part of the coefficient is pos-

itive; otherwise it is set to ‘0’ [24]. Therefore, the total size

of the generated IrisCode is 9600 (240x20x2) bits.

3.3 Consistent Bits Extraction

Once the true IrisCodes are generated from the enrollment

images, the most consistent bits are extracted by identify-

ing fragile bits and masking them out. Fragile bits are bits

that have a substantial probability of being ‘0’ in some im-

ages of an iris and ‘1’ in other images of the same iris.

Hollingsworth et al. [26] showed that masking out fragile

bits and using only consistent bits could improve recogni-

tion performance significantly.

Before extracting the most consistent bits, the gener-

ated k IrisCodes are aligned in order to account for rota-

tional inconsistencies that may be caused due to head tilt

during the acquisition of iris images. In order to achieve

iris recognition with rotation invariance, Daugman [30] sug-

gested comparing the gallery IrisCode to several different

shifts of the probe IrisCode and then taking the shift that

gives the smallest Hamming distance as the correct orienta-

tion of the probe image (rather than rotating the image itself

using the Euler matrix). One angular step circular shift of an

IrisCode is equivalent to rotating the original iris image by

360/r degrees, where r is the angular resolution. As shown

in Fig. 2, since the angular resolution is set to 240 in our

work, shifting the IrisCode by a single angular step is equiv-

alent to rotating the iris image by 1.5 degrees. Fig. 3 shows

an example of aligning two IrisCodes of size (2×6) using

one shift in both directions, where the angular resolution is

represented horizontally and the radial resolution is repre-

sented vertically, using the same technique. Here, we use

the same procedure to align the k IrisCodes generated dur-

ing enrolment. First, the first IrisCode is set as a reference

template. Then, the following steps are repeated for each of

the remaining k − 1 IrisCodes:

1. Compute the Hamming distance between the reference

IrisCode and the IrisCode to be aligned with it.

2. Shift the IirsCode to be aligned with respect to the ref-

erence IrisCode by one angular step at a time eight

times in both directions (this corresponds to shifting

the original iris image 12 degrees in both directions

step 1.5 degrees) and compute the Hamming distance

between this IrisCode and the reference IrisCode after

each shift.

3. Take the shift that corresponds to the smallest Ham-

ming distance from the distances computed in Steps 1

and 2 as the correct orientation of the template under

consideration.

After alignment, the corresponding bits in the k iris vectors

are summed up and only bits that give a sum of ‘0’ or ‘k’ are

considered consistent and collected in a consistent bit vector

C, and their positions are collected in a position vector P.

3.4 BioCode Generation

BioCode generation is the most important stage of BioEn-

coding. In this stage, the consistent bits of the true IrisCode

are protected by mapping them to another set of random bits

that comprise the compact BioCode. This random mapping

process is illustrated in Fig.4 and can be summarized in the

following steps:

1. Group bits in the consistent bit vector C into n/m ad-

dressing words of length m each, where n is the number

of bits in C and the operator ‘/’ denotes integer division

with truncation of the result toward zero. For example,

if the number of bits in a given consistent bit vector

is 63 and the value of m was set to 6, the number of

addressing words would be 10.

2. Use a random seed to generate a pseudorandom se-

quence S of length 2m. For example, as shown in Fig.4,

if m = 6, the length of S would be 64. The seed is deter-

mined randomly by the verification system and stored

in a secure centralized enrollment server. It is impor-

tant to note that this seed need not be user-specific and
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Fig. 4 Illustration of BioCode generation process where m = 6.

therefore all the enrolled users can use the same seed

(and hence the pseudorandom sequence). However,

different seeds need to be generated for different ap-

plications to prevent cross-matching across databases.

3. Map each addressing word in C to the bit value in

S whose position is addressed by the value in that

word. For example, in Fig.4, the address binary word

111101b (which is equal to the decimal value 61) is

mapped to 0 since the value at position 61 in S is equal

to 0, while the word 001001b (decimal 9) is mapped to

1 since the value at position 9 in S is equal to 1, and so

on.

4. Constitute the protected BioCode from the set of n/m

addressed bits in S .

5. Store the BioCode in the centralized enrolment sever

and discard the true (unprotected) IrisCode safely.

It is clear from the above procedure that the BioCode

generation process is noninvertible since it is based on a

many-to-one transformation. On average, half of the words

in the true IrisCode are mapped to ‘1’ while the remaining

words are mapped to ‘0’. Thus, even if both the generated

BioCode and the random sequence are known, it is impossi-

ble to determine which word in the true IrisCode addresses

a given ‘0’ (or ‘1’) in the generated BioCode.

From the recognition perspective, since IrisCodes from

different eyes are statistically independent [24], the corre-

sponding BioCodes are ensured to be statistically indepen-

dent as well regardless of whether IrisCodes from different

eyes are employed to address different random sequences

or even are used to address the same random sequence. In

other words, the transformation process does not rely on the

random sequence in the sense that different sequence should

be assigned to each user. This advantage makes it possible

to use sole IrisCodes in the authentication process without

sacrificing user’s privacy since there is no need to store user-

specific data in a user-specific token. On the other hand,

due to the similarity between IrisCodes that are generated

from different samples of the same eye, the Hamming dis-

tances between BioCodes derived from these codes would

be less than the Hamming distances between BioCodes de-

rived from IrisCodes that are generated from samples of dif-

ferent eyes and therefore the separability between genuine

and imposter distributions could be maintained. This im-

plies that, unlike BioHashing, the random sequence need

not to be user-specific. That is because if the same random

sequence is used by many users, a unique BioCode would be

generated for each user since corresponding words in differ-

ent IrisCodes would address different bits in a shared ran-

dom sequence.

Moreover, the cancelability of BioEncoding is straight-

forward since changing the random sequence would gen-

erate different BioCodes. That is, if the data stored in

the centralized database is compromised, the compromised

BioCodes can be revoked and replaced by other codes sim-

ply by changing the random sequence and re-enrolling the

users.

4. Revocability and Noninvertibility of BioEncoding

As mentioned in Sec. 2, a practical cancelable biometrics

technique has to meet a number of requirements. The advan-

tage of BioEncoding over other template protection schemes

is that it meets all the requirements of cancelable biometrics

construct without introducing significant degradation to the

recognition performance. In this section, we discuss the re-

vocability, renewability capacity and noninvertibility prop-

erties of BioEncoding whereas the recognition accuracy is
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Fig. 5 An example of BioCode inversion where m = 3

discussed in the next section.

4.1 Revocability and Renewability Capacity

It is straightforward to show that BioEncoding is revoca-

ble since a compromised BioCode can be canceled and re-

placed by another one simply by replacing the random seed

value. Using a different seed value, a different (pseudo-) ran-

dom sequence would be generated and the derived BioCode

would be changed accordingly. The number of different

random sequences that can be generated for each user re-

lies on the length of the addressing words in the divided

IrisCode. Since a word of length m can address 2m bits,

there are 2(2m) different sequences that can be generated for

IrisCodes divided into words of length m. For example, if

m = 4, a compromised BioCode can be replaced by another

one from 216 candidates. However, it is important to note

that there may be some correlation between some generated

sequences. Therefore, in case a given random sequence is

compromised and another random sequence has to be gen-

erated to replace the compromised one, the statistical inde-

pendence between the two sequences should be tested. If

they did not pass the test, another sequence should be gen-

erated until we get a sequence that passes the test.

4.2 Noninvertibility Analysis

Here we show formally the difficulty of obtaining the un-

protected consistent bit vector (and hence the true IrisCode)

from a protected BioCode even if both the BioCode and the

random seed (and hence the random sequence) are compro-

mised. From the security point of view, recovering the con-

sistent bit vector of an IrisCode is as dangerous as recover-

ing the IrisCode itself since it contains the most significant

bits in that IrisCode. Therefore, in this section, the terms

consistent bit vector and IrisCode are used interchangeably.

True-, as well as pseudo-, random binary sequences,

which are often employed in cryptographic systems, should

exhibit a number of statistical attributes [31]. One of these

attributes is that the number of 1’s, in such sequences,

should be approximately equal to the number of 0’s. Since

the binary sequence S , which is used in the transformation

process, is randomly generated, we can say, roughly, that

the number of 1’s in S equals the number of 0’s equals 2m−1,

where m is the length of any addressing word in an IrisCode.

Therefore, as illustrated in Fig. 5, each bit in a BioCode may

be originated from 2m−1 different addressing words. As a re-

sult, an attacker needs to perform 2l(m−1) different trials in or-

der to try all the possible combinations, where l is the length

of the BioCode. Since l = n/m, where n is number of bits

in an IrisCode, then the number of trials would be 2n(m−1)/m.

For large m, the required number of trials would be ≈ 2n.

This implies that recovering the true IrisCode from the pro-

tected BioCode is nearly as difficult as randomly guessing

all bits in the original unprotected IrisCode, which is com-

putationally infeasible.

On the other hand, since BioHashing can be considered

as a quantized under-determined system of linear equations

[7], the BioHashed biometric features could be inverted par-

tially, if the token is compromised, via pseudo-inverse op-

eration. However, while BioHashing prevents attacks via

record multiplicity, in which an adversary uses multiple dif-

ferent pairs of protected templates and transformation ran-

dom numbers to recover the true template, BioEncoding

may be vulnerable to this type of attack. That is why it is

very important in BioEncoding not to let users to specify

the random seed by themselves. If users were allowed to

specify the random seed, which is used in the transforma-

tion process freely, an adversary could obtain many pairs of

BioCodes and random sequences and hence would be able

to narrow down the candidates of the IrisCodes.

5. Experimental Results

In order to evaluate the performance of BioEncoding and

compare it with that of BioHashing [7], several experiments

have been conducted using the publicly available iris image

database collected by the Chinese Academy of Science −

Institute of Automation, CASIA v1.0 [32]. The main rea-

son for choosing this dataset is to make a fair comparison

between our proposed method and the BioHashing-based

method in [7] since their reported results are based on the

same dataset. This dataset contains 756 iris images from

108 unique eyes, with 7 different samples from each eye.

All the images are 8-bit grayscale images with a resolution

of 320×280 pixels. Seven IrisCodes were generated for each

eye. From these codes, six different codes were used to

extract the most consistent bits for that eye. By changing

the codes that are used to extract the consistent bits, seven

different consistent bit vectors were obtained for each eye.

We found that, on average, 20.46% of the bits in the gener-

ated IrisCodes were perfectly consistent; that is, the average

number of bits that were always equal to the same binary

value across all IrisCodes for an iris is 1964 bits. The iris

with the smallest fraction had 332 bits (3.46%) that are per-

fectly consistent and the iris with the highest fraction has

3737 perfectly consistent bits (38.93%). That means, on av-

erage, the generated BioCodes would be of length 1964/m.

This length is long enough for m ≤ 6, both from the secu-

rity point of view and with respect to the maximum BioHash
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dimension tested in [7].

It is important to note that the reason for obtaining

some too short consistent bit vectors, which could make the

task of inverting the generated BioCodes simpler, is due to

the employment of all the images in the adopted dataset, for

identifying the consistent bits during enrolment, regardless

of their quality. Fortunately, this is not the case in practical

systems in which only images that have sufficient quality to

support recognition are used on enrollment.

For inter-class comparisons, every consistent bit vector

for each eye is considered as the enrollment IrisCode and

matched against the corresponding bit vectors that are ex-

tracted from the same positions in other IrisCodes generated

from all the eye-samples captured from other eyes, yielding

566244 different imposter comparisons. That is, if a con-

sistent bit vector, extracted from some given eye, contains

n consistent bits where the positions of these consistent bits

are stored in the position vector for that eye, matching is car-

ried out between these bits and the n bits found in the same

positions in other IrisCodes. This implies that the number

of the compared bits is different from eye to eye and re-

lies on the number of consistent bits found in each eye. For

intra-class comparisons, each iris image is matched against

the consistent bit vector extracted from other images of the

same iris, leading to 7 genuine comparisons for each eye and

a total of 756 genuine comparisons.

At first, consistent vectors of the original (unprotected)

IrisCodes were matched against each other before applying

any transformation. Then, two sets of experiments were

conducted. In the first set, we applied BioEncoding with

different addressing word lengths, m = 2, 3, 4, 5, and 6 bits;

and matching between the BioCodes derived after each ex-

periment was performed. Since our interest is in performing

authentication using sole IrisCodes and not relying on user-

specific random numbers, the same random sequence S was

used with all users. Fig. 6 shows the imposter and genuine

distributions for true IrisCodes and for BioCodes generated

using different word lengths.

We used the decidability metric d′ in order to investi-

gate the impact of applying BioEncoding on the recognition

accuracy. The decidability metric measures the separability

between genuine and imposter distributions in terms of the

difference between their means normalized by some func-

tion of their standard deviations and is given by [30]:

d′ =
|µi − µg|

√

(σ2
i
+ σ2

g)/2

(2)

where µi and µg are the means and σ2
i

and σ2
g are the vari-

ances of the imposter and genuine distributions, respec-

tively. High decidability values imply better separation be-

tween genuine and imposter distributions, which allows for

more accurate recognition.

Table 1 shows the means, variances and decidabil-

ity values of genuine and imposter distributions for true

IrisCodes and for the protected BioCodes generated using

the mentioned m values. The results in Fig.6 and Table 1

show that the recognition performance is preserved for m =

2, 3 and 4, while slightly degraded for m = 5 and 6. This

is because as m increases, the probability of a match be-

tween corresponding addressing words decreases and hence

the match probability between the corresponding addressed

bits in the compared BioCodes decreases consequently. This

implies that while the recognition accuracy can be enhanced

as a result of decreasing the length of address words (m ≤

4), larger values of m (≥ 4), on the other hand, increases

the renewability capacity and strengthens the noninvertibilty

property of BioCodes. Among the tested m values, address

words of length 4 can provide an appropriate compromise

between the requirements of renewability and noninvertibil-

ity on the one side and the requirement of accuracy preser-

vation on the other side. That is because using address

words of length 4, a large number of random sequences

could be employed at the expense of only a slight (insignifi-

cant) degradation in recognition accuracy. Generally speak-

ing, small m values should be employed in applications that

require high recognition accuracy while large m values are

preferred in applications where high security is required.

On the other hand, in the second set of experiments, we

simulated BioHashing using the same BioHash dimensions,

m = 100, 150, 200, 300, and 350 bits; adopted in [7]. How-

ever, rather than using a unique seed among different irises,

as performed in [7], the same random numbers were used for

all users, as done with BioEncoding, since it should be as-

sumed that imposters have an access to the the user-specific

token in a more realistic scenario.

Fig. 7 shows the imposter and genuine distributions

for true IrisCodes and for each tested dimensions of Bio-

Hash and Table 2 shows the means, variances and decidabil-

ity values of these distributions. In contrast with the results

obtained in [7], it is clear from the results shown here that

BioHashing degrades the recognition accuracy achieved us-

ing unprotected iris recognition system significantly. These

results conform with the analysis presented in [9] and prove

Table 1 Means, variances and decidability values of imposter and gen-

uine distributions for BioCodes of different word lengths

Word length (m) µi σ2
i

µg σ2
g d′

True IrisCodes 0.4931 0.0015 0.1123 0.0057 6.35

2 0.4930 0.0016 0.1122 0.0059 6.24

3 0.4820 0.0014 0.1259 0.0055 6.04

4 0.4819 0.0016 0.1258 0.0054 6.04

5 0.4855 0.0010 0.1869 0.0069 4.74

6 0.4809 0.0011 0.2062 0.0071 4.45

Table 2 Means, variances and decidability values of imposter and gen-

uine ditsributions for different dimensions of BioHash

Dimension (m) µi σ2
i

µg σ2
g d′

True IrisCodes 0.4931 0.0015 0.1123 0.0057 6.35

100 0.3393 0.0032 0.1488 0.0041 3.18

150 0.3870 0.0022 0.1700 0.0046 3.74

200 0.4287 0.0015 0.1823 0.0046 4.41

300 0.4391 0.0013 0.1864 0.0045 4.68

350 0.4471 0.0012 0.1903 0.0046 4.76
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(a) (b) (c)

(d) (e) (f)

Fig. 6 The genuine and imposter distributions for (a) true IrisCodes, BioCodes generated using word

lengths of (b) 2, (c) 3, (d) 4, (e) 5 and (f) 6 bits.

(a) (b) (c)

(d) (e) (f)

Fig. 7 The genuine and imposter distributions for (a) true IrisCodes and BioHashes of dimensions (b)

100, (c) 150, (d) 200, (e) 300 and (f) 350 bits.

that the perfect results obtained in [7] are based on the

impractical assumption that an imposter cannot gain access

to the random number of a genuine user.

However, it can be noticed from the results shown in

Fig.7 and Table 2 that when the BioHash dimension in-

creases, the recognition accuracy increases consequently.

Therefore, we tested the accuracy using higher BioHash di-

mensions, m = 400, 450, 500, 550, and 600 bits. We found

from the obtained decidability values of all the tested dimen-

sions, shown in Fig. 8, that the recognition accuracy starts

to fall down for m > 350.

From the obtained results, we can conclude that Bio-

Hashing introduces a noticeable degradation in recognition

accuracy where the best accuracy was obtained when m

(BioHash dimension) = 350. Whereas, for BioEncoding,

the recognition accuracy is preserved for m (word length) ≤

4. For ease of comparison, Fig. 9 shows the ROC curves for

different BioHash dimensions and Fig. 10 shows the ROC

curves for BioEncoding, for the tested m values. The cor-

responding equal error rates (EER) are listed in Table 3 for
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Fig. 8 The decidability values corresponding to the tested BioHash Di-

mensions.

Fig. 9 ROC curves for BioHash dimensions adopted in [7].

Fig. 10 ROC curves for BioCodes generated using the tested word

lengths.

BioHashes and in Table 4 for BioCodes. The obtained re-

sults show clearly the efficiency of our proposed cancelable

biometrics scheme compared to BioHashing.

6. Conclusion

In this paper, we have presented an effective cancelable bio-

Table 3 EER values for BioHashes generated using different dimensions

BioHash Dimension (m) ERR

True IrisCodes 1.3

100 5.8

150 4.8

200 3.4

300 2.2

350 2.2

Table 4 EER values for BioCodes generated using different m values

Word length (m) ERR

True IrisCodes 1.3

2 1.3

3 1.3

4 1.4

5 1.8

6 2.1

metrics scheme that is based on random sequence address-

ing for protecting IrisCodes. The proposed scheme satis-

fies the requirements of the cancelable biometrics construct

without sacrificing the recognition accuracy and hence al-

lows for enhanced security and privacy in iris recogni-

tion systems. The diversity and revocability properties

of the proposed scheme have been discussed and its non-

invertibility has been analyzed. Experiments using CASIA

dataset have been conducted in order to compare the im-

pact of applying the proposed scheme on the recognition

accuracy with that of BioHashing techniques in the stolen-

case scenario. Experimental results showed the superiority

of our scheme compared to the true performance of Bio-

Hashing and it has been shown that the recognition accuracy

of the proposed method has not been affected by employing

the same random sequence with all users and therefore it

can be adopted without using any tokens for storing user-

specific information as required in the case of BioHashing

techniques.

A promising area for future research is the applica-

tion of the proposed scheme to the binary representations

of other biometrics characteristics, such as fingerprint and

face.
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