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Abstract. We propose a method for surface reconstruction of artist
paintings. In order to reproduce the appearance of a painting, in-
cluding color, surface texture, and glossiness, it is essential to ac-
quire the pixel-wise light reflection property and orientation of the
surface and render an image under an arbitrary lighting condition.
A photometric approach is used to estimate bidirectional reflectance
distribution functions (BRDFs) and surface normals from a set of im-
ages photographed by a fixed camera with sparsely distributed point
light sources. A robust and computationally less expensive nonlinear
optimization algorithm is proposed that optimizes the small num-
ber of parameters to simultaneously determine all of the specular
BRDF, diffuse albedo, and surface normal. The proposed method
can be applied to moderately glossy surfaces without separating
captured images into diffuse and specular reflections beforehand.
Experiments were conducted using oil paintings with different sur-
face glossiness. The effectiveness of the proposed method is vali-
dated by comparing captured and rendered images. © 2011 SPIE and
IS&T. [DOI: 10.1117/1.3533329]

1 Introduction
Digital imaging of cultural artifacts and its research have
been attracting increasing interest.1–9 The purposes of dig-
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itization include recording of the current condition of the
artifacts for restoration in the future, scientific study of
valuable artifacts that are difficult to access, exhibition via
publication or the Internet, duplication, and many other
applications.

Regarding fine arts, especially artist paintings, much re-
search focuses on estimating the accurate color of target
objects from digitized images. In most cases, objects are
photographed under a fixed lighting condition that is care-
fully controlled so that gloss on the object surface is not
observed by the camera. This approach is plausible since the
surface gloss conceals the color of the object body.

However, glossiness plays an important role for the
observers to know the material of the object. To make the
stored digital data more informative and useful for a wide
variety of applications, it is necessary to record the gloss
property as well as color. It is also necessary to recover the
fine geometry or orientation of the object surface, not only
because it is an essential factor to know the surface asperity
but also the light reflection behavior is a function of incident
and viewing angles.

The light reflection behavior is described as a bidirec-
tional reflectance distribution function (BRDF),10–12 while
the surface orientation is usually expressed as a normal vec-
tor. Together with the three-dimensional (3-D) shape of the
object, recording the BRDFs and surface normals makes
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it possible to reproduce accurate appearance of the target
object under arbitrary lighting conditions with image render-
ing techniques.

The present paper focuses on the estimation of BRDFs
and surface normals of flat oil paintings. Oil paintings often
have large asperity on the surface due to the canvas textures
and brush strokes. In museums, they are commonly varnished
and have specularity.

In order to estimate BRDFs and surface normals at each
point on the object, a set of images needs to be captured with
different lighting or viewing directions. In this research, a
photometric approach is employed where images are pho-
tographed with a camera fixed perpendicular to the paint-
ing surface by changing light source locations. Regarding
the image-capture apparatus, a simple prototype was built
that requires minimal user operations and ensures the safety
of target paintings in consideration of the applicability in
museums. A nonlinear optimization algorithm is proposed
that is computationally less expensive and robust to estimate
pixel-wise BRDFs and surface normals without separating
the captured images into diffuse and specular reflections be-
forehand.

Section 2 addresses previous work on acquisition of ge-
ometry and reflection property and relation to this research.
Section 3 describes the BRDF model used in this research.
The nonlinear optimization algorithm is proposed in Sec. 4.
In Sec. 5, BRDF parameters and surface normals are esti-
mated using oil paintings with different glossiness and the
results are evaluated. Section 5 also describes the parameter
correction method for varnished and strongly glossy sur-
faces. Limitations of the proposed method and future work
are mentioned in Sec. 6 with a summary of this article.

2 Related Work
Research on digital imaging of fine arts has traditionally
focused on object color estimation where the purpose is
to derive accurate colorimetric values of the object from
sensor responses of a camera. Multispectral imaging tech-
niques have been actively studied since the 1990s to im-
prove the colorimetric accuracy, including research targeting
artist paintings.1, 13–15 In most of this research, images pho-
tographed under fixed viewing and lighting conditions were
used for color estimation, and angle dependency of the object
appearance was not managed.

In the field of computer graphics, much research has been
carried out regarding angle dependency of light reflection
and a lot of BRDF models have been proposed.16–20 Inverse
rendering techniques are also actively researched where
shape, surface normals, and BRDFs are estimated from
images of the target object.21 Boivin and Gagalowicz22

proposed a method to recover an approximation of the BRDF
from a single photograph and a 3-D geometric model of the
scene. Lensch et al.23 presented a high-quality image-based
measuring method that fits BRDFs to different materials of
a 3-D object surface. Tarini et al.24 introduced a shape-from-
distortion technique for inverse rendering of objects with
mirroring optical characteristics. Goldman et al.25 addressed
a surface reconstruction method for recovering spatially
varying BRDFs based on the observation that most objects
are composed of a small number of fundamental materials.
Zickler et al.26 presented a reflectance-sharing technique to

capture spatially varying BRDFs from a small number of im-
ages without a parametric reflectance model. Atkinson and
Hancock27 presented a shape-recovery technique that uses
polarization information and the Fresnel theory. Francken
et al.28 proposed a technique for surface normal acquisition
by using an LCD screen as a polarized light source. Chen
et al.29 proposed an active 3-D scanning method using a mod-
ulated phase-shifting technique. Lamond et al.30 presented an
image-based method for separating diffuse and specular re-
flections by illuminating a scene with high-frequency illumi-
nation patterns. Once 3-D geometries, surface normals, and
reflectance properties are estimated, it is possible to render
an image of the scene for arbitrary view points and lighting
conditions. Research on inverse rendering mainly aims at dig-
itizing 3-D objects for applications such as motion pictures,
computer games, and virtual reality. In the present research,
a simple data acquisition apparatus is used by restricting the
target object to be dielectric flat paintings with fine asperities.

For surface recovery of flat objects, Gardner et al.31 de-
veloped an imaging system with a fixed camera and moving
light sources. In this system, light sources, a neon tube, and
a linear laser emitter, are translated above the object. This
method however cannot usually be applied to valuable her-
itages in museums from the viewpoint of safety of the target
objects due to the system design that the device must be set
above the object. In the present research, in order to guaran-
tee the safety of the target object, images are photographed
with a camera and multiple light sources located horizontally
away from the object.

Chen et al.7 present a framework for surface reconstruc-
tion of oil paintings. In their experiment, a light source is
moved along an arc locus around the target painting at dense
sampling intervals while a trichromatic camera is fixed per-
pendicular to the painting surface. They assume that the in-
dex of refraction of the varnished painting is constant over
the surface, and estimate BRDFs and normals by nonlinear
optimization. They examined two BRDF models, the Phong
model17 and the Torrance–Sparrow model,16 and showed that
the latter has better agreement with actual observations. In
the present research, the Torrance–Sparrow model is selected
to express BRDFs based on their evaluation results.

A limitation of the framework by Chen et al. is that it only
guarantees images rendered under light sources located on
the 2-D light source locus used for image capturing. In the
present research, images are photographed with light sources
sparsely distributed in the 3-D space so that synthetic images
can be created for arbitrary lighting conditions. Furthermore,
the present paper proposes a nonlinear optimization algo-
rithm which is computationally less expensive to estimate
BRDFs and surface normals.

Tominaga and Tanaka9 employed a photometric technique
with a multispectral camera for estimating spectral BRDFs
and surface normals of oil paintings. In their method, surface
normals and diffuse BRDFs were first estimated based on the
photometric stereo method.32, 33 Specular BRDFs were next
estimated by nonlinear optimization assuming that they are
constant across the entire surface. In order to estimate sur-
face normals in the first step, they needed to filter out image
intensities (sensor responses of the camera) that seem to con-
tain specular reflection. However, it is difficult to completely
distinguish whether an image intensity contains specular
reflection or not, if the target surface demonstrates broad
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specular reflection and several light-source locations give
some specularity to the image intensities. In that case, empir-
ical filtering may decline the accuracy of normal estimation.
That also results in the low estimation accuracy of specu-
lar BRDFs because their method uses the estimated normals
for estimation of specular BRDFs. In the present research,
surface normals and both specular and diffuse BRDFs are
simultaneously estimated by nonlinear optimization. There-
fore, it is not necessary to completely extract image inten-
sities not containing specular reflection (although rough es-
timation helps the nonlinear optimization procedure quickly
converge).

Since Chen et al.7 and Tominaga and Tanaka9 used BRDF
models that are not energy conservation compliant, rendered
images under novel lighting conditions may deviate from
physical consistency. The BRDF model used in the present
research approximately incorporates the law of energy con-
servation.

Ma et al.34 proposed a method to independently derive
surface normals from diffuse and specular reflections, later
modified by Chen et al.35 based on a data-driven reflectance
model. They created gradational illumination patterns by
many light sources densely distributed on a hemisphere
and captured images by using polarization filters. This ap-
proach reduces the number of images required to estimate
both specular-based and diffuse-based surface normals. Their
method however, cannot estimate a surface roughness param-
eter of the specular BRDF. Furthermore, a particular lighting
device is required that is not applicable to practical image
capturing situations in museums. In the present research, a
photometric approach is employed from the practical point of
view, as well as to assure safety as mentioned above. The pro-
posed method determines single normal vector at each point
on the surface by using both specular and diffuse reflections.

3 Modeling the Light Reflection on Oil Painting
Surfaces

3.1 BRDF Model Based on the Microfacet Theory
The light reflection behavior on inhomogeneous dielectric
object surfaces can be represented as the dichromatic light-
reflection model.36 A fraction of the incident light does not
penetrate into the object body but is reflected at the inter-
face according to Fresnel’s law of reflection and observed as
specular reflection. The remaining incident light that pene-
trates into the object body is emitted out after being scattered
and is absorbed inside the body and is observed as diffuse
reflection.

In order to mathematically represent this kind of light
reflection behavior, a lot of BRDF models have been
proposed.16–20 In the present paper, the Torrance–Sparrow
model16 is employed because of its simplicity and the valid-
ity for oil paintings presented by Chen et al.7

3.1.1 Specular reflection model
The Torrance–Sparrow model assumes that the object sur-
face is composed of a large number of microfacets, each of
which reflects light only to the specular direction according

to Fresnel’s law. The specular BRDF ρs is modeled as Eq.
(1)

ρs = D · F · G

4(nTl)(nTv)
, (1)

where n is the normal vector of the object surface, l is the light
vector pointing to the light source from the object surface,
and v is the view vector pointing to the observer (or the
camera) from the object surface. All vectors have the length
of unity.

In Eq. (1), D represents the probability distribution func-
tion of the normal vector a of microfacets for which a number
of mathematical models have been proposed.16, 37–40 In this
research, the normal distribution function of Eq. (2) is used to
model the isotropic reflection on the surface of oil paintings

D (a, n; σ ) = 1

πσ 2
e−(α/σ )2

, (2)

where α is the angle between the microfacet normal a and
the surface normal n, and σ is a constant that represents the
surface roughness (or a spatial broadness of the specular re-
flection). Only the microfacets with the normal vector a = h
reflect the incident light to the direction of v in the propor-
tion of D(h, n; σ ), where h = (v + l)/|v + l| is the halfway
vector of the light vector l and the view vector v.

In Eq. (1), G is the geometrical attenuation factor. The
Fresnel reflectance F of the microfacets is determined by the
microfacet normal a, light vector l, and the refractive index
n of the material.

3.1.2 Diffuse reflection model
As the diffuse component of BRDF, the Lambert model41 is
used in this research because of its simplicity. The Lambert
model represents the diffuse BRDF ρd as

ρd = 1

π
A(λ), (3)

where A is the spectral diffuse reflectance and λ denotes
the wavelength of light. In the Lambert model, the BRDF is
independent of the incident and reflection directions but is
dependent only on the spectral characteristics of the object
body.

3.1.3 Dichromatic reflection model
In the dichromatic reflection model, the BRDF of the object
surface is represented by a linear combination of ρs and
ρd. Suppose the specular reflection on the object surface is
caused only by the Fresnel reflection on the microfacets; then
the specular component of BRDF is represented as ρs in Eq.
(1). Also suppose the intensity of the diffuse reflection is
proportional to the amount of light that proceeds into the
object body without specular reflection at the interface. The
BRDF in total can be written as

ρ = kdρd + ρs, (4)

where kd is a constant representing the ratio of light flux that
proceeds into the object body to the entire incident light flux.
Since the light flux ratio of each microfacet is 1 − F(a, l; ν),
the constant kd is calculated as

kd =
∫

�a

[1 − F (a, l; ν)] · D (a, n; σ ) dωa, (5)

Journal of Electronic Imaging Jan–Mar 2011/Vol. 20(1)013006-3



Hasegawa et al.: Photometric approach to surface reconstruction of artist paintings

where dωa is the infinitesimal solid angle along a microfacet
normal, and the domain of integration �a is the hemisphere
that covers the object surface (the surface normal n corre-
sponds to the zenithal angle of 0 deg). The geometrical at-
tenuation factor G is assumed to be constant (G = 1) here for
simplification because the Torrance–Sparrow model does not
incorporate the effect of inter-reflection among microfacets
into G (as the Oren–Nayar model does19).

3.2 Model Simplification
Although the Fresnel reflectance F depends on the incident
angle to the microfacet, it does not significantly change when
the incident angle is less than about π/3 and can be approx-
imated as a constant.42–44 This assumption holds for a sur-
face normal illuminated with a small incident angle because
microfacet normals are assumed to be normally distributed
around the surface normal with relatively small variance.
It can also be applied to the entire 2-D object surface when
photographed perpendicular to the object because the surface
cannot be lit from behind and any surface point with large in-
cident angle reflects only negligible specular reflection to the
camera direction. In this research, a constant F0 = F(n, n; ν)
is therefore substituted to the Fresnel reflectance F in Eq. (1)
for all incident angles.

The geometrical attenuation factor is also approximated
to G = 1 since there is little effect on the reflection to the
camera direction when the incident angle to the object surface
is small.43, 45

The approximation of the Fresnel reflectance is also ap-
plied to kd in Eq. (5) for small incident angles as Eq. (6)

kd ≈
∫

�a

(1 − F0) · D (a, n; σ ) dωa

= (1 − F0)
∫

�a

D (a, n; σ ) dωa

= 1 − F0. (6)

This approximation can be considered a simplified version
of the BRDF model by Kelemen and Szimary-Kalos.46

The final simplified BRDF model used in this research is
then given by

ρ = 1

π
(1 − F0)A(λ) + 1

π
F0

e−(α/σ )2

4σ 2(nTl)(nTv)
. (7)

4 Surface Reconstruction Method
In order to express the light reflection behavior at each image
pixel, the BRDF and surface normal at the corresponding
point on the target object are required. This section addresses
an algorithm that estimates the pixel-wise BRDF and surface
normal from a set of images based on the BRDF model
described in Sec. 3.

4.1 Sensor Responses of a Camera
The spectral radiance of the light reflected on the object
surface with BRDF ρ is given as R(λ) by

R(λ) =
∫

�l

ρL(λ)(nTl)dωl, (8)

where L(λ) is the spectral radiance of the incident light, dωl
is an infinitesimal solid angle along the incident direction,
and �l is its integration domain. When using a point light
source and assuming dωl is small enough, Eq. (6) can be
represented as Eq. (9) with a constant 
ωl

R(λ) = ρL(λ)(nTl)
ωl. (9)

The sensor response of a camera for channel c is given as
qc,n by

qc,n = βc

∫
λ

ρL(λ)(nTln)
ωl,n Sc(λ) dλ,

where n denotes the light source location, Sc(λ) is the spectral
sensitivity of the camera for channel c, and β is a quantization
coefficient. From Eq. (7),

qc,n = βc
ωl,n

π
(1 − F0)(nTln)qd;c

+ βc
ωl,n

π
F0

e−(α/σ )2

4σ 2(nTv)
qs;c,

where

qd;c =
∫

λ

L(λ)A(λ)Sc(λ) dλ,

qs;c =
∫

λ

L(λ)Sc(λ) dλ.

For convenience, let the normalized sensor response pc,n
= [π/(βc · qs;c · 
ωl,n)] · qc,n , which can be obtained
through camera calibration. Then,

pc,n = pd;c,n + ps;n, (10)

where

pd;c,n = (1 − F0)(nTln)td;c, (11)

ps;n = F0
e−(α/σ )2

4σ 2nTv
, (12)

and td;c = qd;c/qs;c, which is referred to as diffuse albedo,
hereafter. Equation (10) represents the dichromatic reflection
model in terms of sensor responses where qd;c is the diffuse
component, while qs;c is the specular component and not
affected by the color of the object body.

4.2 Parameter Estimation by Nonlinear Optimization
The photometric approach in this research uses the normal-
ized sensor responses pc,n given as Eq. (10) for multiple light
source locations n = 1, 2, · · · , N to estimate the pixel-wise
surface normal and BRDF. Since the light vector ln and view
vector v are obtained via geometric calibration of the de-
vices, unknown parameters are n, td,c, F0, and σ . The normal
vector has two degrees of freedom because its length is unity.
When using an RGB camera (c = R, G, B), the degrees of
freedom of the diffuse albedo td,c is 3. Therefore, the total
number of unknown parameters is seven. To find an opti-
mal value for each of these seven parameters, a nonlinear
optimization method needs to be used. The problem is that
it becomes computationally expensive and easily trapped at
local minima independently when optimizing all parameters.

In this research, these seven parameters are determined
by using a nonlinear optimization algorithm shown in
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Fig. 1 Proposed nonlinear optimization algorithm to estimate the
BRDF parameters and the surface normal. See text for details of
each step (1 to 6).

Fig. 1, which is robust, and requires computationally less
expensive operations. Details are as follows:

Step 1. Set initial values to n, F0, and σ . These parameters
determine the specular reflection. Section 4.3 describes how
to determine the initial values in detail.

Step 2. From Eq. (12), calculate the specular component
of the normalized sensor response. Let the result be p̂s;n .

Step 3. Subtract p̂s;n from the observed normalized sensor
responses pc,n and calculate the residual diffuse component
p̃d;c,n as

p̃d;c,n = pc,n − p̂s;n . (13)

The closer the parameters n, F0, and σ are to the optimal
values, the closer p̃d;c,n is to the observed diffuse component
pd;c,n .

Step 4. Calculate the diffuse albedo td;c in Eq. (11) by
means of the least squares method. By substituting p̃d;c,n to
pd;c,n in Eq. (11), Eq. (14) is obtained

p̃T
d;c ≈ (1 − F0)mTtd;c, (14)

where

p̃T
d;c = [ p̃d;c,1 p̃d;c,2 · · · p̃d;c,N ],

mT = nT[l1 l2 · · · lN ].

In Eq. (14), td;c is the diffuse albedo that minimizes the
approximation error and is calculated by means of the least
squares method as

td;c = 1

1 − F0
· p̃T

d;cm

mTm
. (15)

Step 5. Using F0, n, and the diffuse albedo td;c given by
Eq. (15), calculate the diffuse component of the normalized
sensor responses pd;c,n of Eq. (11) for all c’s and n’s. Let the
results be p̂d;c,n .

Step 6. Calculate the difference between p̃d;c,n derived in
Step 3 and p̂d;c,n derived in Step 5, and determine the cost
function O of the nonlinear optimization as

O(n; F0, σ ) =
∑

n

∑
c

( p̃d;c,n − p̂d;c,n)2

+
∑

c

max(|td;c − 0.5| − 0.5, 0)2. (16)

The second term of the right side of the equation is a penalty
that restricts the range of the diffuse albedo td;c to [0, 1].

By using a nonlinear optimization method, the optimal
value for each of n, F0, and σ is determined following
the algorithm mentioned above. Any nonlinear optimization
method can be applied to this algorithm. In this research, the
Nelder–Mead downhill simplex method47 is employed that
does not need to derive the gradient of the cost function.

The procedure described above decreases the number of
parameters to be optimized from seven to four, because
td;c,n , the parameter with 3 degrees of freedom, is computed
uniquely dependent on n, F0, and σ . This leads to the less
computational cost and robustness of nonlinear optimization
compared with the case where all seven parameters are si-
multaneously optimized.

4.3 Initial Values
The algorithm mentioned in Sec. 4.2 requires appropriate
initial values for n, F0, and σ . This section describes how to
determine those initial values.

Regarding the surface normal n, the initial value is cal-
culated based on the principle of the photometric stereo
method.32, 33Although the photometric stereo method can be
applied to each of red, green, and blue channel of the cam-
era, one channel that gives the largest pc;n among those three
channels is used here by taking into account the robustness
against noise.

This method assumes that sensor responses from the cam-
era include no specular component. Since actual normalized
sensor responses pc,n may include specular component de-
pending on the light source location and the surface normal,
it is required to exclude those observations. However, it can-
not be strictly judged before parameter estimation whether a
normalized sensor response includes specular reflection, es-
pecially when the object has a reflection property that broadly
reflects specular. A tentative judgment is hence made so that
normalized sensor responses larger than a threshold are omit-
ted. In this research, the threshold is empirically determined
as mc + 2sc, where mc and sc denote the mean and standard
deviation of normalized sensor responses for all light source
locations. Sensor responses smaller than mc − 2sc are also
omitted because they may indicate that the incident angle
is large and Eq. (6) does not hold. The photometric stereo
method is applied only for the set of remaining light source
locations.
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Fig. 2 An oil painting used for the experiment. (a) entire image, (b),
(c) analyzed region in the white rectangle of (a), and (d) manually
created mask image to discriminate the surface conditions (gray:
glossy, black: matte or semi-glossy).

Regarding F0 and σ , the parameters for the specular com-
ponent of BRDF, fixed values are used for all pixels. Hara
et al.44 estimated specular BRDF parameters from logarithms
of sensor responses. However, when using this method, it
is required that sensor responses including specular com-
ponents have been obtained for many light source loca-
tions and the surface normal has been obtained with high
accuracy. This method cannot be used in this research be-
cause the light sources are sparsely distributed. Alternatively,
F0 = 0.05 and σ = 0.4 are used as empirically determined
initial values. These values do not deviate far from the actual
properties of dielectric objects. It was confirmed through ex-
periments that using these values does not largely affect the
results of the nonlinear optimization by the downhill simplex
method and the number of iterations for convergence.

5 Experiments
Experiments were carried out where oil paintings were pho-
tographed and pixel-wise BRDFs and surface normals were
estimated.

Figure 2(a) shows one of the target oil paintings used in
this experiment. Pixel-wise estimation was executed for the
region enclosed by the white rectangle (1121×1130 pixels).
This painting was selected because its surface had both glossy
and semi-glossy (or matte) regions so that the proposed
method can be evaluated for different finishing conditions.
Figure 2(d) illustrates a mask image that was manually cre-
ated based on the visual observation to distinguish those two
regions. The painting in the gray mask region was thickly
painted and varnished. The surface was smooth and high
specularity was observed as appearing in the captured image
shown in Figs. 2(b) and 2(c). On the other hand, the painting
in the black mask region was thinly painted, not varnished,
and rough. Specular reflection was moderately weak.

5.1 Image Capture
An image-capture system was designed in consideration of
the applicability in museums. Figure 3 shows the prototype
used in the experiments, which was simply composed of a

Fig. 3 Prototype of image-capture apparatus with a digital camera
and 16 LED lamps.

computer-controlled RGB camera and 16 light sources (white
LED lamps). In order to minimize users’ task and the time to
acquire whole necessary data, structured-light-based geom-
etry reconstruction and polarization-based diffuse/specular
separation strategies were not employed. No movable parts
were used to ensure the safety of target paintings.

The light sources were small enough to be treated as point
light sources. They were carefully selected from 25 LED
lamps within the same lot so that the variance of their spec-
tral characteristics was negligibly small. Camera parameters
(pose, focal length, etc.) were obtained beforehand by the ge-
ometric calibration procedure.48 For each light source, pixel-
wise incident radiance on the painting surface was calibrated
by photographing a diffuse white board with known BRDF
placed on the same plane as the painting.

Target paintings were photographed at multiple expo-
sures for each light source to create high dynamic range
images.49, 50 All images were automatically captured.

5.2 Parameter Estimation Results
Figure 4 shows estimated parameters visualized as map im-
ages. Figure 4(a) is a map of diffuse albedo td;c. Compared
with the captured image in Fig. 2, it can be seen that specu-
larity and asperity of the surface have disappeared and only
the pigment color is extracted. Figure 4(b) is a map of surface
normal n, where red, green, and blue channels are assigned
to the vector coordinates X , Y , and Z , respectively. Patterns
of the paint thickness and canvas texture can be observed.
Figures 4(c) and 4(d) show maps of Fresnel reflectance F0
and surface roughness σ , respectively, where brightness of
the image was assigned to the value of estimated parameters.

Figure 5 shows examples of image rendering results. Fig-
ure 5(a) is one of the captured images used for the param-
eter estimation. A synthetic image rendered under the same
lighting condition is shown as in Fig. 5(b), accompanied with
the difference image as Fig. 5(c). For comparison, Fig. 5(d)
shows a rendered image with surface normals and diffuse
albedos estimated by the conventional photometric stereo
method32, 33 and specular BRDF parameters by nonlinear op-
timization by fixing the surface normals and diffuse albe-
dos. The difference between Figs. 5(a) and 5(d) is shown
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Fig. 4 Visualized maps of estimated parameters. (a) Diffuse albedo,
(b) surface normal, (c) Fresnel reflectance, and (d) surface rough-
ness. In (c) and (d), range [0.0, 1.0] was mapped to grayscale
[0, 255].

in Fig. 5(e). Similar results were obtained for other light
sources.

The conventional photometric stereo method resulted in a
larger difference even if the pixel-wise nonlinear optimiza-
tion was applied to estimate specular BRDF parameters. This
is considered mainly due to the estimation error on surface
normals because other parameters are dependently estimated
on the surface normals.

Figure 6 shows the estimation accuracy at two pixels in
the semi-glossy surface region. Normalized sensor responses
derived from the BRDF model agree well with the obser-
vation by the camera. Figure 6(a) indicates that relatively

Fig. 5 Image rendering results: (a) captured image, (b) rendered
image by the proposed method, (c) absolute difference between (a)
and (b), (d) rendered image by the conventional photometric stereo
method (specular parameters were estimated by nonlinear optimiza-
tion), and (e) absolute difference between (a) and (d).

Fig. 6 Normalized sensor responses observed by a camera and
calculated from the BRDF model with estimated parameters. (a) Sur-
face with broad specular property. (b) Surface with relatively narrow
specular property.

large specular may have been observed by the camera for
several light source locations. In this case, the surface nor-
mal cannot be calculated based on the conventional pho-
tometric stereo method because the diffuse reflection com-
ponents cannot be completely separated from the observed
sensor responses before estimation. The proposed method,
however, can accurately estimate the normal of this kind of
surfaces by using both specular and diffuse reflections in
the nonlinear optimization procedure. Surface reconstruc-
tion results of another semi-glossy oil painting are shown in
Fig. 7.

In Fig. 5, although the image rendering result by the pro-
posed method (b) looks quite similar to the captured image
(a), estimated parameters have latent errors. As described
above, the surface of the painting in the gray mask region is
highly glossy. According to the visual observation, specular
reflection property is spatially uniform in this region and it
was expected that the estimated parameters F0 and σ should
be uniform across this region.

The results illustrated in Figs. 4(c) and 4(d), however,
clearly show significant nonuniformity, which implies the
low estimation accuracy. When using sparsely distributed
light sources as in this experiment, object surfaces that have
narrow specular properties may not reflect specular to the
camera direction for any light source locations, depending
on the surface normal. In that case, the estimation accuracy
of the specular reflection parameter significantly declines.

Section 5.3 describes the way to correct the parameters
for objects with narrow specular reflection.
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Fig. 7 Image rendering results for a semi-glossy oil painting (non-
varnished): (a) captured image, (b) rendered image, (c) surface nor-
mal map, and (d) specular component (upper right) and diffuse com-
ponent (lower left) of (b).

5.3 Parameter Correction
Many oil paintings in museums are varnished for surface
protection. Those paintings usually have narrow specular
reflection properties as the painting used in this experiment
with gray mask in Fig. 2(d). As described in Sec. 5.2, when
using a sparse set of light sources, large errors may occur for

Fig. 8 Visualized maps of estimated parameters after correction:
(a) diffuse albedo, (b) surface normal, (c) Fresnel reflectance, and
(d) surface roughness.

Fig. 9 Difference maps of diffuse albedo and surface normal be-
tween before and after correction: (a) diffuse albedo (absolute dif-
ference [0.0, 0.1]) and (b) surface normal (difference in degree
[0.0, 10.0]) were mapped to grayscale [0, 255].

highly glossy paintings. Although densely distributed light
sources could improve the estimation accuracy, it increases
the time for image capturing and the amount of image data.

In order to compensate for the estimation error for glossy
surfaces, parameters were corrected from the first estima-
tion based on the assumption as exploited by Tominaga
and Tanaka9 that the specular BRDF is spatially uniform
a cross the painting surface. The correction method first de-
termined the spatially uniform Fresnel reflectance F̄0 and
surface roughness σ̄ from the estimation results obtained in
Sec. 5.2. The surface normal n and diffuse albedo td;c were
next updated by using these values.

The specular BRDF parameters F̄0 and σ̄ estimated in
Sec. 4 have optimal values at pixels where the reflection ob-
served by the camera includes a large specular component.
By extracting pixels where the sensor responses calculated
by the BRDF model include relatively large specular com-
ponent, F0’s and σ ’s are averaged and used as F̄0 and σ̄ .
By considering miscalculation of HDR images and dead pix-
els of the camera sensor, data with extremely large specular
component were omitted. In this research, the strategy for

Fig. 10 Image rendering results after parameter correction: (a) cap-
tured image used for parameter estimation, (b) rendered image under
the same lighting condition as (a), (c) absolute difference between (a)
and (b), (d) captured image under a novel lighting condition, (e) ren-
dered image under the same lighting condition as (c), and (f) absolute
difference between (d) and (e).
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Table 1 Statistics of the specular BRDF parameters estimated by
the leave-one-out evaluation for all cases, accompanied with the es-
timation results by using all 16 light sources.

Fresnel reflectance Surface roughness

Mean 0.05394 0.03621

Min. 0.05376 0.03613

Max. 0.05402 0.03629

Std. Dev. 0.00007 0.00005

All lights 0.05398 0.03620

selecting proper pixels was between 0.5 and 5.0 % in specu-
lar magnitude across the entire pixels.

The surface normal n and diffuse albedo td;c were next
updated using F̄0 and σ̄ determined above. In the algorithm
mentioned in Sec. 4.2, F0 and σ were fixed at F̄0 and σ̄ ,
respectively; only n was optimized (td;c was dependently
determined from n, F̄0, and σ̄ ).

Parameter correction was applied to the gray mask re-
gionshown in Fig. 2(d). Figure 8 shows the corrected pa-
rameters as visualized maps. Although the albedo map and
surface normal map look almost the same as in Figs. 4(a) and
4(b) (before correction), some modification has been made as
shown in Fig. 9 in order to better fit the model to the observed
sensor responses with new specular BRDF parameters.

Figure 10 shows examples of image rendering results us-
ing the corrected parameters. Figure 10(a) is the captured
image with one of the 16 light sources that was used for
parameter estimation. Figure 10(b) is the rendered image; in

Fig. 11 Image rendering results for a glossy oil painting (varnished):
(a) captured image, (b) rendered image, (c) surface normal map, and
(d) specular component (upper right) and diffuse component (lower
left) of (b).

this case, the corrected parameters were F̄0 = 0.05398 and
σ̄ = 0.03620. The rendered image represents the very simi-
lar appearance to the captured image in terms of both color
and specularity.

In order to evaluate image rendering under novel light-
ing conditions, one of the 16 light sources was omitted from
parameter estimation and an image was rendered under the
omitted one. Four light sources that had caused strong spec-
ular for many pixels were not omitted because the estimation
accuracy of specular BRDF significantly decreases if they
are omitted.

Figures 10(d) and 10(e) show an example of a captured
image and a rendered image, respectively. Although some
differences can be observed, the location and intensity of
gloss in the rendered images well correspond to the captured
image. The same was true for other light sources.

Table 1 shows statistics of the specular BRDF parameters
estimated by the leave-one-out evaluation described above
for all cases. Estimated parameters are fairly stable, revealing
that the proposed optimization method robustly estimated
those parameters.

Figure 11 shows another example of the surface recon-
struction results for a varnished, glossy oil painting. Spec-
ular parameters correction resulted in F̄0 = 0.05309 and
σ̄ = 0.04843.

6 Conclusions and Future Work
A method to estimate BRDFs and normals on oil painting
surfaces that uses a set of images photographed with mul-
tiple light sources was proposed. The method utilizes a ro-
bust and computationally less expensive nonlinear optimiza-
tion algorithm that derives diffuse albedos dependently and
uniquely from other estimation parameters. In contrast to
the conventional photometric stereo method, the proposed
method can estimate normals of surfaces with moderate
glossiness. For highly glossy surfaces, parameters are cor-
rected by assuming that the specular BRDF is spatially con-
stant across the surface. Experiments were carried out us-
ing oil paintings with different glossiness. The proposed
method was validated by creating synthetic images with
estimated parameters and comparing them with captured
images.

For image reproduction of an oil painting, it is required
that not only the paint color but also the asperity by brush
strokes be accurately represented because both of them are
what an artist had intended to express in a work. Glossiness of
the painting surface is also important since many oil paintings
in museums are varnished for surface protection. Recording
surface normals and BRDFs on the painting surfaces makes
it possible to reproduce accurate appearance of the target
paintings.

Future work includes inter-reflection removal, reproduc-
tion of cast shadows, and optimization on lighting conditions
for image capture.

The proposed method does not take into account the effect
of inter-reflection on the object surface. For oil paintings
with strong brush strokes, the parameter estimation accuracy
may decline due to inter-reflection. It is required to eliminate
biases caused by inter-reflections from sensor responses of a
camera.
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In actual lighting situations, cast shadows may occur
on the surface for large incident angles. Although the
normals on the painting surface can be acquired by the
proposed method, cast shadows cannot be reproduced in
rendered images because the 3-D geometry of the painting is
unknown. It is required to estimate not only surface normals
but the fine 3-D geometry in order to reproduce the accurate
appearance in rendered images.

The proposed method assumes that the specular BRDF
is constant across the highly glossy surface even for pix-
els where sensor responses do not include a large specular
component for any light source locations. To improve the es-
timation accuracy, it is desired that sensor responses include
moderately large specular components at every pixel at least
for one light source location. A possible solution is to in-
crease the number of light source locations. In that case, the
number of light source locations and the arrangement should
be carefully optimized to reduce the time and the total image
data size.
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