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Abstract. Remote photoplethysmography (rPPG) enables us to1
capture the vital signs such as pulse rate, respiratory rate, oxygen2
saturation, and even heart rate variability (HRV) without any contact3
devises. Although the papers of rPPG mainly focus on the use4
of standard RGB camera, it cannot used for the cases in night or5
under the dim light conditions. Therefore, in this paper, we propose6
a novel noncontact method for monitoring HRV without visible7
lighting. The proposed method uses dual-band infrared videos to8
ensure robustness to fluctuations in illumination. The hemoglobin9
component is extracted via a simple projection from the dual-band10
pixel values in logarithmic space. We demonstrate the accurate11
extraction of pulse wave signals using pulse wave maps. As the12
results, we indicated the effectiveness of HRV monitoring in the13
situation under the dim light condition. c© 2018 Society for Imaging14
Science and Technology.15
[DOI: 10.2352/J.ImagingSci.Technol.2018.62.5.000000]16

17

1. INTRODUCTION18

Remote photoplethysmography (rPPG) is a useful technique19

for monitoring vital signs such as pulse rate, respiratory20

rate, oxygen saturation, and even heart rate variability21

(HRV) using a standard RGB camera. The pulse rate reflects22

humans’ physiological health, and plays an important role23

in fitness and health care monitoring. For further analysis24

of human physiological information, measurements of HRV25

(also known as the index of cardiac autonomic activity [1])26

enable noncontact monitoring of the autonomic nervous27

system, which controls involuntary body functions. The low-28

frequency signals (LF) are widely known as one of the most29

reliable indicators of sympathetic activity [2], whereas the30

high-frequency (HF) signals are affected by breathing and31

are related to parasympathetic activity [3]. HRV monitoring32
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provides many benefits in situations such as monitoring 33

fatigue, concentration at work, and drowsiness when driving, 34

and can also help to prevent sudden infant death syndrome 35

(SIDS), heart attacks, or paroxysmal diseases in patients 36

located either at home or in hospital. 37

2. RELATEDWORKS 38

McDuff et al. [4] developed a method for detecting 39

HRV performance using a five-band sensor with red, 40

green, blue, cyan, and orange bands. They also developed 41

a statistical model called blind source separation using 42

independent component analysis (ICA), and demonstrated 43

the effectiveness of remote HRVmeasurements. Poh et al. [5] 44

found that HRV could be measured using a low-cost 45

commerce webcam. Their method employs ICA to detect 46

the HRV from variations in the spatially averaged pixel 47

values of the region of interest (ROI) from standard RGB 48

video recordings made under ambient light conditions. 49

Although their method can easily detect the vital signs, 50

thus allowing more practical uses than the approach of 51

McDuff et al. [4], they assume that the videos contain a 52

single periodic component. In other words, their method 53

is not applicable if the subjects are moving with a specific 54

frequency (e.g., when training in a gym). Alghoul et al. [6] 55

proposed a method for estimating HRV using a single-band 56

magnified video signal in the green channel based on an 57

application of Eulerian video magnification [7]. They first 58

proposed an HRV estimation technique using a single-band 59

video signal, but only verified the effectiveness of thismethod 60

in a laboratory setup. However, in real applications, the 61

illumination often exhibits time-varying fluctuations. Thus, 62

their estimations are inevitably affected by fluctuations in 63

illumination. Kurita et al. [8] and Fukunishi et al. [9] 64

proposed a remote HRV monitoring method for extracting 65

hemoglobin information based on a skin optics model. 66

Their approach considers the modified Lambert–Beer law 67
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in standard RGB video recordings under ambient light68

conditions. The key point of their method is the removal69

of fluctuations in illumination (shading component) by70

projecting into a constant vector in a logarithmic color vector71

space.72

As we described some applications of vital signs in the73

introduction part, it can be used for various monitoring74

systems. Especially, based on the above papers, we focus on75

the continuous monitoring of infants’ vital signs to prevent76

SIDS and the monitoring of long-distance drivers for signs77

of fatigue, particularly at night. In both cases, physiological78

information such as vital signs must be monitored without79

visible lighting.80

Inspired by several fundamental studies on pulse81

rate monitoring without visible lighting using single-band82

middle-wavelength video cameras [10], single-band near-83

infrared video cameras [11], and thermal video cameras [12],84

Mitsuhashi et al. [13, 14] proposed a method for monitoring85

the pulse rate using dual-band infrared video signals. They86

decomposed these video signals into hemoglobin, which87

is the component induced from blood flow changes, and88

shading, which is the component induced from intensity89

variations in illumination, based on an application presented90

in [8, 9]. As a result, the pulse rate can be accurately estimated91

even when the illumination is fluctuating. However, they92

could not capture the HRV because the pulse wave signal93

could not be extracted with sufficient accuracy. Regardless,94

we consider their method to have significant potential of95

further analysis for HRV monitoring if the extraction of96

the pulse wave signal induced from the heartbeat can be97

improved.98

Kumar et al. [15] found that human faces can be distin-99

guished as subregions that strongly reflect the pulsatile blood100

flow changes and other subregions that do not. They tracked101

faces using a Kanade–Lucas–Tomasi (KLT) tracker and102

divided the face region into several ROIs. In the frequency103

domain, they then computed the pulsatile components of104

the pulse wave signals arising from cardiac heartbeats in105

each subregion and generated a goodness metric (pulse wave106

map) that visualizes pulse wave component inside the face.107

This led to a robust pulse rate monitoring system that uses108

the single-band green channel in a low-cost standard RGB109

camera and enabled the precise extraction of pulse wave110

signals based on the spatial relative amplitude of the pulsatile111

components.112

Mitsuhashi et al. [13, 14] attempted to extract the113

hemoglobin component from dual infrared bands via a114

simple projection in the logarithmic color vector space. Their115

ROI is manually selected to be part of the forehead, as many116

researchers typically use this region as the part of the ROIs.117

However, according to the work of [15], the strength of the118

pulse wave signal depends on the subregion inside the face.119

They did not consider this matter and the ROI will affect the120

accuracy of pulse rate estimation. Moreover, they could not121

capture theHRVparameters such as LF, HF, and LF/HF ratio122

due to the quality of extracted pulse wave.123

Therefore, in this paper, we aimed to improve the work 124

presented by [13, 14] for extracting HRV parameters under 125

the dim light condition. In order to achieve the extraction 126

of HRV parameters, we consider the spatial information of 127

extracted hemoglobin component. We replace the manual 128

ROI selection with a process based on a weighted ratio 129

calculated from the pulsatile components induced from 130

heartbeat. By choosing ROIs based on this weighted ratio, we 131

can detect the HRV parameters even when the illumination 132

is fluctuating under dim light condition. The remainder 133

of this paper is organized as follows. In Section 2, we 134

briefly explain the conventional method for extracting the 135

hemoglobin component from facial images [13, 14] as they 136

presented and describe our proposed method for selecting 137

the ROI based on the weighted ratio. In Section 3, we 138

describe experiments to evaluate this approach, and present 139

HRV estimation results in comparison with the ground truth 140

measured by an electrocardiograph. The experimental results 141

are discussed in Section 4, and we conclude by summarizing 142

this study in Section 5. 143

3. PROPOSEDMETHOD FOR ESTIMATINGHRV 144

USING DUAL-BAND INFRARED VIDEO SIGNALS 145

In this section, we briefly introduce the conventional 146

method [13, 14] for extracting hemoglobin factor based on 147

an application of [8, 9]. After the hemoglobin information 148

has been extracted, the pulse wave signal is generated by 149

integrating the pulse wave map and multiple inputs of rPPG 150

signals, a process inspired by [15]. 151

3.1 Extraction of Hemoglobin Information Using 152

Dual-Band Infrared Video Recordings 153

In this section, we describe the procedure for obtaining 154

pulse wave signals from two-band infrared video signals. 155

This method uses a combination of bandpass filters with 156

central wavelengths of 780 nm and 900 nm. This is 157

because, in previous studies [13, 14], simulations based on 158

spectral characteristics indicate that these wavelengths are 159

effective filters for extracting the pulse rate. Therefore, these 160

optical bandpass filters were attached to the front of each 161

monochrome camera. Details about the experimental setup 162

and experimental results are described in Section 3. 163

Figure 1 shows the facial video recordings captured from 164

the two-band camera at the central wavelengths of 780 nm 165

and 900 nm. The corresponding two-band pixel values of 166

each wavelength were converted into points in the color 167

vector space, where each pixel value is converted into a 168

logarithmic value, as shown in Figure 2. The horizontal and 169

vertical axes in Fig. 2 indicate the logarithmic pixel values in 170

the two-band infrared videos. The studies of Kurita et al. [8] 171

and Fukunishi et al. [9] used a two-layered skin model 172

based on the modified Lambert–Beer law. Similarly, we 173

applied the modified Lambert–Beer law in a single-layered 174

model. The process of converting the two-band infrared 175

video signals into their hemoglobin and shading components 176

in each frame is as follows. Consider the two-dimensional 177

plane constructed from the pixel values of two-band images 178
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(a) 780 nm (b) 900 nm

Figure 1. Original dual-band infrared video recordings at different central
wavelengths before the extraction of hemoglobin information.

Figure 2. Outline of the proposed method for separating the hemoglobin
and shading components in logarithmic color vector space

corresponding to the same location (e.g., forehead), as shown179

by the red point in Fig. 1(a), (b). An arbitrary vector A180

is expressed as the linear combination of basis vectors, as181

shown in the left-hand term of Eq. (1). Vector A can also182

be expressed as a linear combination of new basis vectors in183

the color space via a logarithmic transformation, as shown in184

Fig. 2. Therefore, vectorA can be expressed by two patterns185

using the following equations.186

A= I1 ex + I2 ey = I ′1 eh+ I ′2 es, (1)187

where I1 and I2 are the logarithmic pixel values before188

the video signals are converted into their hemoglobin189

and shading components. I ′1 and I ′2 are the corresponding190

components after the video signals have been converted into191

their hemoglobin and shading components. ex and ey are the192

basis vectors in the color vector space; eh and es are the new193

basis vectors for the hemoglobin and shading components.194

Equation (1) can be represented as195

(ex ey),

(
I1
I2

)
= (eh es)

(
I ′1
I ′2

)
. (2)196

Applying the two-dimensional inverse matrix of (eh, es) to197

Eq. (2) and noting that (ex , ey) is the identity matrix, we can198

(a) Hemoglobin component (b) Shading component

Figure 3. Skin components after the separation of hemoglobin and
shading by using our proposed algorithm.

write as the following equation. 199(
I ′1
I ′2

)
=

(
eh es

)−1
(
I1
I2

)
. (3) 200

Suppose that the basis vector eh is represented by the 201

transpose expression t (hx , hy). The basis vector es is then 202

given by the transpose matrix t (1/
√

2 1/
√

2), because the 203

shading components are the same in any band. Thus, we have 204(
I ′1
I ′2

)
=

(
hx 1/

√
2

hy 1/
√

2

)−1 (
I1
I2

)
. (4) 205

In determining the elements of the hemoglobin vector, 206

denoted by hx and hy , Eq. (4) can be represented as 207(
I ′1
I ′2

)
=

(
cos (θ) 1
sin (θ) 1

)−1 (
I1
I2

)
(5) 208

where θ indicates the angle of the hemoglobin vector. We 209

calculated the heart rate for each angle of the vector (91 steps 210

from 0 to 90◦) and then calculated the absolute error rate at 211

every angle. Finally, we determined the effective hemoglobin 212

vector as that which minimized the absolute error rate with 213

respect to the ground truth heart rate. Decomposed videos 214

of the separated hemoglobin and shading components are 215

shown in Figure 3. 216

3.2 Pulse Wave Acquisition by Integrating the Pulse Wave 217

Map and Multiple Inputs of rPPG Signals 218

We evaluated the proposed method for extracting the 219

hemoglobin component using the dual-band infrared video 220

signals presented in [13, 14]. Using the resulting hemoglobin 221

images, we focused on the automatic extraction of the pulse 222

wave signal.With regard to the ROI, a face tracker is typically 223

used to detect the face and set the ROI to the forehead or 224

the cheek. However, the extracted pulse wave signal must 225

be very clean to accurately estimate HRV. According to 226

the maximum ratio combining (MRC) algorithm presented 227

in [15], a clean rPPG signal can be generated by integrating 228

the pulse wave map and multiple inputs of rPPG signals 229

obtained from the subregions of the face. Let us introduce 230

an example of how to generate clean pulse wave signals. 231

Consider a facial region trimmed to a pixel resolution of 232
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Figure 4. Calculation of the pulsatile component in the frequency domain.

(a) Single-band IR video (b) Hemoglobin component

Figure 5. Pulse wave map from single-band infrared video and extracted
hemoglobin components using the proposed method.

400× 400 squares, and divide the face into 1600 blocks of233

10× 10 pixels. We first compute the pixel value variations234

yi(t) by spatially averaging the pixel values within each235

subregion, where i denotes the corresponding subregion.236

All yi(t) are temporally filtered using a [0.75 Hz, 3.0 Hz]237

bandpass filter to remove noise from outside the band of238

interest.239

Consider the sequence y1(t), y2(t), . . . , yn(t) to be the240

different channels that receive signals and noise of different241

strengths. Finally, a clean pulse wave signal p(t) is obtained242

by combining all of these different channels using a weighted243

average as follows:244

p(t)=
n∑

i=1

Gi yi(t) (6)245

where n denotes the number of subregions. Gi represents the246

weighted ratio, which is defined as the signal to noise ratio in247

the frequency domain. This is given by248

Gi =

∫ max Freq+0.3
max Freq−0.3 Y (f )df∫ 2∗max Freq+0.3

max Freq−0.3 Y (f )df −
∫ max Freq+0.3

max Freq−0.3 Y (f )df
(7)249

where Y (f ) denotes the power spectral density (PSD) of250

y(i), as shown in Figure 4, and max Freq represents the peak251

power spectrum density of yi(t) in the frequency domain.252

The numerator represents the pulsatile factor induced from253

heartbeats and the denominator represents the non-pulsatile254

factor induced from the noise. We computed Gi for every255

subregion and then obtained a pulse distributionmap, which256

reflects the proportion of the pulsatile component in each257

subregion (see Figure 5(a), (b)). Fig. 5(a) shows the pulse258

Figure 6. Pulse wave signal given by the proposed method considering
the integration of the pulse wave map and multiple rPPG signals.

map obtained from single-band infrared video recordings 259

under stable light conditions. This map indicates that the 260

cheek and forehead subregions contain stronger pulsatile 261

components than the other facial subregions, as expected. 262

Fig. 5(b) shows the pulse map obtained from hemoglobin 263

images extracted from dual-band infrared video recordings. 264

As most subregions exhibit high values, this confirms the 265

effectiveness of our separation method. After we have 266

obtained the pulse map-based signal, a procedure based 267

on the smoothness prior and an adaptive bandpass filter is 268

performed. The window of the adaptive bandpass filter is set 269

to [max Freq− 0.3 2 ∗max Freq+ 0.3], because the detection 270

of HRV is assumed to require a precise passband considering 271

the harmonics. Finally, a clean pulse wave signal is obtained, 272

as shown in Figure 6. 273

To compare the estimated HRV values from the 274

extracted pulse wave signals with the ground truth obtained 275

from an electrocardiograph, the pulse wave signal is interpo- 276

lated with a cubic spline function at a sampling frequency of 277

50Hz, as is the ground truth. TheR–Rwave (RR) intervals are 278

obtained by detecting the peaks of the interpolated signal at 279

every 20 frames. They are calculated as the intervals between 280

neighboring peaks. The pulse rate is obtained by averaging 281

these RR intervals according to HRV analysis is performed 282

by PSD estimation using the Lomb periodogram. The LF and 283

HF powers are calculated by integrating the PSD curve over 284

the regions 0.04–0.15 Hz and 285

PR=
60

RR intervals
(8) 286

0.15–0.4Hz, respectively.We calculate the ratio of LF andHF 287

to verify the accuracy of our estimations. 288

4. EXPERIMENTAL SETUP AND RESULTS 289

In this section, we describe the experimental setup and 290

procedure for verifying the effectiveness of our proposed 291

method. The experimental results show that our proposed 292

method provides good HRV estimates without visible 293

lighting and when the illumination is fluctuating. 294

4.1 Experimental Setup 295

The experimental specification is shown in Table I. The 296

experiments were performed indoors in a dark room with 297

two artificial sunlight lamps acting as sources of illumination, 298
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Figure 7. Two-band infrared video recording system

Table I. Experimental specification.

Camera RGB CCD DMK 23UV024
(Imaging Source, Inc.)

Optical filter FUJI FILTER OPTICAL IR78, IR90
(FUJIFILM, Inc.)

Light source Artificial Light, XC-100 (SERIC, Inc.)
Electrocardiograph RMT1000, Nihon Kohden Inc.

as shown in Figure 7. In this study, the flickering of the299

artificial sunlight played the role of fluctuations in the light300

source. Participantswere seated in front of a table and fixed in301

position using a thin rest positioned in front of the two-band302

camera at distances of approximately 0.5 m from the camera303

and 0.3 m from each artificial sunlight source. The two-band304

camera system includes a beam splitter and monochrome305

cameras, with bandpass filters attached to the front of each306

camera.307

As described in previous studies [13, 14], filters with308

central wavelengths of 780 nm and 900 nm were selected309

as the most effective combination for capturing variations310

in oxy-hemoglobin. Therefore, we limited the incident light311

to the monochrome camera with a central wavelength of312

780 nm and a full width at half maximum of ±10 nm.313

We limited the incident light to the other monochrome314

camera with a central wavelength of 900 nm and a full315

width at half maximum of ±10 nm. We recorded videos316

using the following patterns. The first video was recorded317

without fluctuations in illumination using stable artificial318

sunlight. The stable artificial sunlight condition can be319

obtained bywaiting formore than 30min after turning on the320

light. The second video was recorded under conditions with321

fluctuations in illumination. These illumination fluctuations322

occur if the artificial sunlight source is turned up in less323

a few minutes. We assumed that the former environment324

had no illumination fluctuations and the latter suffered from325

illumination fluctuations. All videos were recorded using an326

8-bit monochrome camera at 30 fps with pixel resolution327

of 640 × 480 and were saved in BMP format on a PC.328

We also recorded an electrocardiogram for each participant329

Figure 8. Several ROIs for validating the estimation accuracy of our
proposed method.

Table II. PR comparison with the ground truth under conditions with fluctuations in
illumination. AER: absolute error rate; MAE: mean absolute error; RMSE: root mean
squared error.

AER [%] MAE [bpm] RMSE [bpm]
One band 2.74 2.51 2.56
780 [nm]
One band 2.68 2.57 2.58
900 [nm]
Proposed 0.35 0.33 0.43
Method

using a polygraph system at a sampling rate of 1 kHz with 330

a cut-off frequency of 15 Hz. The ground truth heart rate 331

was calculated by averaging the RR intervals obtained from 332

the electrocardiogram and used to verify the accuracy of the 333

proposed method. 334

4.2 Experimental Results 335

Since we obtained hemoglobin images as shown in Fig. 3(a), 336

which means the spatial distribution of the hemoglobin 337

components, we evaluated the estimated pulse rate at each 338

parts of the face as following metrics: the absolute error 339

rate (AER), the mean absolute error (MAE), and the root 340

mean squared error (RMSE) which are given by following 341

equations. And we evaluated the spatial parts of the face, 342

which are from forehead, right cheek, left cheek, middle 343

brow, and whole face. The average values are listed as 344

following Tables II–V by averaging the estimated values at 345

each parts of face as shown in Figure 8. 346

AER=
|GT −EV |

GT
× 100 (9) 347

MAE =
1
N

N∑
i=1

|GT −EV | (10) 348

RMSE =

√√√√ 1
N

N∑
i=1

(GT −EV )2. (11) 349

Here, GT represents the ground truth obtained from 350

the electrocardiogram and EV represents the estimated 351
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Table III. LF comparison with the ground truth under conditions with fluctuations in
illumination. AER: absolute error rate; MAE: mean absolute error; RMSE: root mean
squared error.

AER [%] MAE [n.u.] RMSE [n.u.]
One band 27.18 6.25 6.40
780 [nm]
One band 29.74 13.74 14.17
900 [nm]
Proposed 10.78 2.48 2.79
Method

Table IV. HF comparison with the ground truth under conditions with fluctuations
in illumination. AER: absolute error rate; MAE: mean absolute error; RMSE: root mean
squared error.

AER [%] MAE [n.u.] RMSE [n.u.]
One band 23.27 6.36 6.96
780 [nm]
One band 28.60 10.46 10.80
900 [nm]
Proposed 8.14 6.26 6.84
Method

Table V. LF/HF comparison with the ground truth under conditions with fluctuations
in illumination. AER: absolute error rate; MAE: mean absolute error; RMSE: root mean
squared error.

AER [%] MAE [n.u.] RMSE [n.u.]
One band 27.44 0.052 0.052
780 [nm]
One band 37.53 0.268 0.125
900 [nm]
Proposed 11.70 0.035 0.050
Method

value determined using the proposed method. The AER is352

normalized with respect to the ground truth. This gives an353

indication of how close the estimated value is to the ground354

truth. We calculated pulse rate (PR), LF, HF, and LF/HF355

for each single-band and dual-band infrared video. Table I356

compares the estimated PR with the ground truth.357

According to Table I, theAER of the pulse rate computed358

from dual-band infrared video signals is lower than that359

from single-band infrared videos as you can see this Table.360

Tables II and III present comparisons of LF and HF with361

the ground truth. These results confirm that our proposed362

method performs well under fluctuations in illumination.363

This is because the corresponding pixel values of the364

dual-band videos are separated into the hemoglobin and365

shading components by fixing the fluctuation of illumination366

(shading) to (1, 1) in the color vector space. The results in367

Table IV indicate that our proposed method offers superior368

performance with comparison of conventional single-band 369

estimation. 370

5. DISCUSSION 371

The experimental results demonstrate that the proposed 372

method provides more accurate estimates of PR, LF, HF, 373

and LF/HF in an environment without visible lighting than 374

the conventional method based on noncontact pulse wave 375

monitoring using a single-band infrared video camera. In 376

particular, our method remains effective under fluctuations 377

in illumination, as it uses the effective combination of in- 378

frared filters for monitoring HRV. As described in Section 1, 379

the single-band infrared video camera method calculates 380

the spatially averaged pixel values within the ROI selected 381

by manual [11]. However, our proposed method considers 382

the brief skin optics and weighted integration of spatial 383

distribution of hemoglobin components. According to the 384

results in Table II, we obtained superior AER, MAE, and 385

RMSE values in comparison with the conventional method. 386

Moreover, we generated the pulse wave signal by integrating 387

a weighted ratio andmultiple inputs of rPPGs. Based on this, 388

the generated pulse wave signal depends on the pulsemap. In 389

other words, if the pulse maps are well generated, the pulse 390

wave signal becomes cleaner and the PR, LF, HF, and LF/HF 391

estimations will be more accurate. According to Fig. 5(a), 392

the pulse maps are well generated because the subregions of 393

the forehead and cheeks exhibit relatively higher amplitudes 394

than the other subregions, as shown in Fig. 8(a). According 395

to Fig. 5(b), such amplitudes were observed in the same 396

subregions as Fig. 5(a). We consider the single-band video 397

recordings of 900 nm to have quite low signal to noise ratio 398

(SNR), as indicated in Fig. 1(b) and Fig. 8(b). The principle of 399

the pulse map suggests that the method will be weaker with 400

low SNRs. To address this issue, we attempted to generate 401

a high SNR pulse map by magnifying the video presented 402

in [7], but we did not obtain a sufficient pulse map because 403

the SNR in the original video recording is too low. The noise 404

was alsomagnified and appeared as artifacts.Wewill attempt 405

to rebuild the experimental setup in future work. 406

Second, it can be considered that the participantsmoved 407

slightly during the continuous 2min recording. The accuracy 408

could be improved by implementing facial tracking or mask 409

processing of the face region during the video recording step. 410

We considered the possibility that tiny movements could 411

appear as artifacts and affect the estimation accuracy. The 412

results in Tables III–V confirm that the single-band infrared 413

video cannot be used to obtain the HRV with sufficient 414

accuracy under fluctuations in the illumination, because the 415

AER values of the pulse rates measured around 30% by using 416

only single-band infrared video. We considered that the 417

bandpass filter did not sufficiently remove the fluctuations 418

in illumination because of aperiodic noise. Hence, the 419

noise frequency was included within the frequency range 420

of the bandpass filter and the pulse rate was affected by 421

the inclusion of this noise. The proposed method obtained 422

AER values for PR, LF, and HF of around 10%. These 423

results demonstrate the robustness of the proposed method 424
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against the illumination fluctuations. This is a result of425

using dual-band infrared video signals, because the video426

signals are decomposed into the hemoglobin and shading427

components by the application of the basis translationmatrix428

in the color vector space. As we mentioned earlier, better429

accuracy could be obtained by implementing facial tracking430

or mask processing of the face region.431

6. CONCLUSIONS AND FUTUREWORKS432

We have proposed a noncontact HRV monitoring method433

that is robust to illumination fluctuations. Separated434

hemoglobin and shading components were obtained435

by determining a new basis vector in the logarithmic436

color vector space. As shown in Table IV, our proposed437

method greatly improves the HRV estimation accuracy,438

especially LF/HF/ ratio, with an AER of 11.70 % compared439

with 27.44% and 37.53% using the conventional method440

based on single-band infrared video signals. To verify the441

effectiveness of our method, a large number of subjects442

will be recruited for future studies. It will be necessary443

to improve the accuracy of HRV estimation using the444

proposed method by implementing facial tracking and445

generating high-performance pulse wave maps.We obtained446

the optimal hemoglobin vector in the case of a small447

pixel distribution. Therefore, we need to decompose the448

hemoglobin component using a large distribution of the449

pixel values. By implementing these improvements, we450

expect to obtain further robust HRV monitoring that can451

compensate the motion of subjects.452
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