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Abstract The human visual system maintains the percep-

tion of colors of an object across various light sources.

Similarly, current digital cameras feature an auto white

balance function, which estimates the illuminant color and

corrects the color of a photograph as if the photograph was

taken under a certain light source. The main subject in a

photograph is often a person’s face, which could be used to

estimate the illuminant color. However, such estimation is

adversely affected by differences in facial colors among

individuals. The present paper proposes an auto white

balance algorithm based on a pigmentation separation

method that separates the human skin color image into the

components of melanin, hemoglobin and shading. Pigment

densities have a uniform property within the same race that

can be calculated from the components of melanin and

hemoglobin in the face. We, thus, propose a method that

uses the subject’s facial color in an image and is unaffected

by individual differences in facial color among Japanese

people.

Keywords Illuminant color estimation � Color collection �
Auto white balance � Human skin color model

1 Introduction

The human visual system has a feature called color constancy

that maintains a person’s perceived color of the same object

under various light sources, yet the object’s physical color

strongly depends on the illuminant color [1]. Current digital

cameras have this feature of the human visual system in the

form of an auto white balance (AWB) function, where the

illuminant color is estimated and the output color is corrected

as if the photograph was taken under a specific light source.

Many studies have proposed methods of estimating the

illuminant color from an image [2]; e.g., methods using

chromatic scene statistics [3, 4] and specular highlights [5].

To compare the estimated results and the ground truth, these

illuminant color estimation methods use a key object whose

color (RGB or spectroscopic information) is known, such as

a gray board. The color of the key object is known in

advance, and the illuminant color is then calculated from the

change in the key object’s color in the photograph. If a

photographer takes a photograph with this key object, the

illuminant color can always be obtained. However, using the

gray board is not practical in nonprofessional use. Further-

more, the main subject in a photograph is often a person, and

there is a strong desire to appropriately color correct the

photograph in this case [6]. Here, color correction might be

achieved using the person’s face as the key object.

However, even among Japanese people, the color of facial

skin varies according to the individual. Table 1 shows that

the maximum chromaticity difference is 4.07 for mean val-

ues of the chromaticity for the areas of the cheek, chin, nose

and mouth extracted from seven Japanese facial images.

Here, the chromaticity difference is calculated usingDa* and

Db* in the CIELAB color space. Furthermore, the skin color

is affected by pigment irregularities, and cannot be repre-

sented as a single value.
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In this paper, we propose a white balance algorithm that

uses the human face in a photograph as the key object, and

considers the individual variation in the skin color based on

a human skin color model [7–9]. Following [7], in our

approach, the individual variation among people of the

same race (such as the Japanese race) corresponds to the

difference in the density of melanin and hemoglobin, which

are the main pigments found in human skin. Assuming that

the minimum densities of the two pigments are uniform

among individuals of the same race, we extract the bias

component that represents the illuminant color from the

skin color of the person in the photograph. Furthermore, we

correct the color of six photographs taken under six light

sources first using our algorithm based on the human skin

color model and then using a method that assumes that the

human skin color does not have individual variation. It is

found that the color correction using our approach based on

the human skin color model outperforms the method

without individual variation.

The remainder of the paper is organized as follows.

Section 2 introduces the imaging model used in related

works on illuminant color estimation and color correction

[10–13] and the human facial skin color analysis as a

pigmentation separation method [7–9]. Section 3 intro-

duces the AWB method using the pigmentation separation

method. Section 4 describes an experiment on color cor-

rection using our AWB method. Section 5 presents a dis-

cussion and suggests directions of future research.

2 Related work

2.1 Imaging model of illuminant color estimation

and color correction

This section introduces the imaging model of the illumi-

nation color estimation and the color correction introduced

in [2]. The AWB is achieved by estimating the illuminant

color from an image and transforming an input image to an

output image that is as taken under a certain light source.

We discuss first the object color model of an image and

then the transformation resulting from a change in illumi-

nant color.

Under the Lambertian assumption [14, 15], image val-

ues fi depend on an object’s surface reflectance S (x, k), the

light source I (k) and the camera sensitivity function Ci (k),

where i = {R, G, B}, k is the wavelength of the light and x

is the spatial coordinate. The sensitivity function of a

regular camera can be approximated by delta functions that

have peaks near the wavelengths of red, green and blue

light. The dependence of image values fi on these factors is

expressed as

fiðxÞ ¼ mðxÞ
Z
x
Sðx; kÞ IðkÞ CiðkÞ dk; ð1Þ

where x is the visible spectrum and m (x) is a scale factor

that models the Lambertian shading that contributes to the

overall light reflected at location x. Assuming that the

scene is illuminated by a single light source and that the

illuminant color ei depends on the color of the light source I

as well as the camera sensitivity function Ci, ei is given as

ei ¼
Z
x
IðkÞ � CiðkÞ dk: ð2Þ

All S, I and C are unknown, and estimating the illumi-

nant color from an image is an under-constrained problem

without assumptions. Assuming that the object color Si can

be expressed as

SiðxÞ ¼
Z
x
Sðx; kÞ � CiðkÞ; ð3Þ

the image value is

fiðxÞ ¼ SiðxÞ ei: ð4Þ

Knowing the object color Si in advance allows the

estimation of the illuminant color ei using Eq. (4).

Table 1 Chromaticity

difference between the mean

RGB values extracted from

seven subjects

The cells of the first row and third column represent the chromaticity differences between subjects 1

and 3
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Color correction is often modeled using a linear trans-

formation, which can be simplified as a diagonal trans-

formation [10, 11, 13]. In this paper, we use the diagonal

transform or von Kries model [12], expressed as

ft ¼ Du;t fu; ð5Þ

where f = (fR, fG, fB)T, fu denotes the pixel values of an

image taken under an unknown light source, and ft denotes

the resultant pixel values of an image transformed under the

arbitrary light source. D u,t is a diagonal matrix that maps

colors obtained under an unknown light source to their cor-

responding colors obtained under the arbitrary illuminant t.

Using Eq. (4), the diagonal matrix D u,t is rewritten as

Du;t ¼

etR
euR

0 0

0
etG
euG

0

0 0
etB
euB

0
BBBBBB@

1
CCCCCCA

; ð6Þ

where ei
u and ei

t are the illuminant colors of the unknown

and arbitrary light sources, respectively. Using this imag-

ing model, if we know the illuminant color ei
u from an

image, it is easy for us to correct the color using Eqs. (5),

(6).

2.2 Imaging model of the pigmentation separation

method

Section 2.1 presented the imaging model of the general

object. This section introduces the imaging model of

human skin used in the literature to separate pigmentation

from the human skin color [7–9].

Igarashi et al. assumed a schematic model of the human

skin as shown in Fig. 1 [16, 17]. The human skin has layers

that contain various pigments such as melanin, hemoglo-

bin, and bilirubin. Melanin and hemoglobin are mostly

contained in the epidermis and dermal layers, respectively.

Tsumura et al. [7–9] assumed that (i) spatial variations in

skin color are caused by spatial variations in the quantities

of the pigments melanin and hemoglobin and (ii) the pig-

ment quantities are mutually independent spatially. We

further assume that (iii) light reflected from human skin

follows the modified Lambert–Beer law [18] and (iv) the

spectral distribution of skin does not abruptly change in the

imaging system. The third and fourth assumptions ensure

linearity in the optical density domain [19]. The linearity

and assumptions (i) and (ii) allow us to calculate the image

values fi of human skin as

fiðxÞ ¼ k

Z
x

expf�qmðxÞ rmðkÞlmðkÞ

�qhðxÞ rhðkÞlhðkÞg Iðx; kÞ CiðkÞ dk;
ð7Þ

where i = {R, G, B}, k is a constant determined from the

gain of the camera, x is the visible spectrum, x is the

positional variable and k is the wavelength of the light.

qm(x), qh(x), rm(k), and rh(k) are the pigment densities

and the spectral cross sections of melanin and hemoglobin.

lm(k) and lm(k) are the mean path lengths of photons in the

epidermis and dermis layers, respectively. I (x,k) and f i (x)

are the incident spectral radiance and reflected spectral

radiance, respectively, at the position x. Ci (k) is the

camera sensitivity function. In addition, it is assumed that

the lighting environment is distant and that its spectrum

does not vary with direction. The illuminant color can be

written as Iðx; kÞ ¼ pðxÞ �IðkÞ, where p(x) encodes shape-

induced shading variation and IðkÞ is the position-inde-

pendent incident spectral radiance. Furthermore, approxi-

mating Ci (k) by the delta function d (k–ki) [20] gives

fiðxÞ ¼ k expf�qmðxÞ rmðkiÞlmðkiÞ
� qhðxÞ rhðkiÞlhðkiÞg pðxÞ �IðkiÞ: ð8Þ

By taking the logarithm of Eq. (8), the image values of

human skin color are described as

f logðxÞ ¼ �qmðxÞrm � qhðxÞrh þ plogðxÞ1 þ elog: ð9Þ

We exclude the term k from Eq. (8) because this term is

a constant. Where,

f log ¼ ½logðfRðxÞÞ; logðfGðxÞÞ; logðfBðxÞÞ�T

rm ¼ ½rmðkRÞ lmðkRÞ; rmðkGÞ lmðkGÞ; rmðkBÞ lmðkBÞ�T ;
rh ¼ ½rhðkRÞ lhðkRÞ; rhðkGÞ lhðkGÞ; rhðkBÞ lhðkBÞ�T ;
1 ¼ ½ 1; 1; 1 �T ;
elog ¼ ½logðIðkRÞÞ; logðIðkGÞÞ; logðIðkBÞÞ�T ;
plogðxÞ ¼ logðpðxÞÞ þ logðkÞ :

ð10Þ

Here, 1 is the light intensity vector. The skin color

vector f log can thus be represented by the weighted linear

combination of the three vectors rm, rh, and 1 with the

bias vector elog. Equation (9) is presented in Fig. 2. If theFig. 1 Schematic model of human skin with layers
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pure pigment color vectors rm and rh are known, a facial

color image can be separated into the component images of

melanin, hemoglobin and shading (as shown in Fig. 3) by

projecting the skin color vector f log to the three vectors rm,

rh, and 1 in the density domain. In previous studies [7–9],

the bias vector elog that represents the illuminant color was

ignored during the projection of a skin color.

3 Proposed approach

3.1 Extracting the bias vector

In Sect. 2.2, the skin color analysis [7–9] ignored the bias

vector when obtaining the components of melanin, hemo-

globin and shading from a facial image. To estimate the

illuminant color employing such skin color analysis, we

propose a method of calculating the bias vector from a

facial image. This section describes our method of

extracting the bias vector and correcting the color of an

image containing a person as the main subject using the

extracted bias vector.

According to the analysis of human skin color, the indi-

vidual variation in facial skin color corresponds to the dif-

ference in the densities of melanin and hemoglobin; so that

the skin color can be plotted on a skin color plane composed

of pure pigment color vectors of melanin and hemoglobin in

the density domain. Figure 4 shows the distribution of skin

color on the skin color plane. There are differences in the

density of pigments between the two Japanese subjects in the

figure (where the left and right graphs, respectively, show the

pigment distributions for subjects 1 and 5 in Table 1). It is

seen that subject 1 has a larger variance than subject 5.

However, as shown by the red and orange lines in Fig. 4, the

minimum densities of melanin and hemoglobin are similar

for the two subjects. Therefore, in this paper, we assume that

the minimum densities of the two pigments are constant

within the same race under the same light source, and we use

these minimum values for the bias vector expressed in

Eq. (11). Figure 5 shows the steps of our algorithm used to

extract the bias vector from the skin color vector and pigment

color vector. On the bottom left graph, the pink dashed lines

are lines running parallel to the pigment’s color vector based

on the minimum vector of melanin and hemoglobin. The

shading component represents only the brightness level of an

image, and we thus exclude the shading density in calculat-

ing the bias vector. The bias vector is thus expressed as

�elog ¼ minfqmðxÞg rm þ minfqhðxÞg rh: ð11Þ

The bias vectors extracted using our method from seven

Japanese facial images taken under the same light source

and for the same camera parameters have a few individual

Fig. 2 Skin color model in the optical density domain

(a) Input image 

(b) Melanin image (c)Hemoglobin image (d) Shading image 

Fig. 3 Pigmentation separation

employing skin color analysis

20 Opt Rev (2017) 24:17–26

123



variations. In fact, the variance of the bias vectors in the

CIELAB space is 0.58 whereas the variance of the facial

color in the CIELAB space is 2.05. This result shows that

the bias vector is more uniform among Japanese people

than the mean facial color.

3.2 AWB algorithm using the bias vector

This section introduces the steps of our AWB algorithm

using the bias vector. The processing flow is shown in

Fig. 6. First, standard facial images are taken under a

Fig. 4 Pigment densities of

skin color vectors of subjects 1

and 5 in Table 1. Vertical and

horizontal axes, respectively,

show the densities of

hemoglobin and melanin

Fig. 5 Processing flow of the proposed method of extracting the bias vector
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standard light source, and using our method introduced in

Sect. 3.1, we calculate the bias vectors from patch images

extracted from standard facial images. By calculating the

mean vector among these bias vectors, we can decide the

standard bias vector es that gives the standard illuminant

color. Next, from the input facial image taken under an

arbitrary light source, we extract the observed bias vector

eo that gives the arbitrary illuminant color. We then color

correct the input facial image as if the image were taken

under the standard light source by exchanging the bias

from es to eo in the density domain. Figure 7 shows the

color correction method that uses the bias vector and

replaces the observed bias with the standard bias.

4 Experiments

4.1 Experiment method

We used a digital camera (Nikon D5100, 2464 9 1632

pixels) and five light sources, namely a xenon light source

(6000 K), halogen light source (3100 K), and light-emit-

ting diode (LED) light source (5600 K) with white, orange,

and green filters. We obtained each facial image in a

darkroom with a single light source, where the distance

between the camera and subject was 90 cm. Each subject

was photographed with a Macbeth color checker positioned

close to his/her face. The camera parameters (F number,

shutter speed, and ISO speed) were the same for all sub-

jects under the same light source.

For the calculation of the standard bias, four Japanese

people were photographed under the standard light source.

In our experiments, the xenon light source was chosen as

the standard light source. Figure 8(a) shows a facial image

of four images trimmed to about 1200 9 800 pixels. A

patch image as shown in Fig. 8b, with 300 9 300 pixels is

Fig. 6 Processing flow of the proposed method of AWB for the facial image using the bias vector

Fig. 7 Color correcting by exchanging the bias vector of the facial

image

22 Opt Rev (2017) 24:17–26
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extracted from the areas of the facial image as cheek,

forehead, chin and so on. The extracted areas are shown as

red squares in Fig. 8a. When employing this method, the

black area of the skin color image is masked. The skin

color vector of the facial pixel is projected to the pigment

color vector, and the minimum vector of pigment density is

calculated. We assumed that the pigment color vector is

similar for subjects of the same race, and we thus used

(0.3517, 0.4310, 0.8004) as the melanin vector and

egamirolocnikSegamilaicaF(a) (b)

Fig. 8 Example images of a a facial image and b patch image

extracted from the facial image, which are used in our experiment

(a) Halogen (b) LED with white filter 

(c) LED with orange filter (d) LED with green filter 

Fig. 9 Facial images taken

under four light sources: a

halogen light source and LED

light source with white, orange

and green filters

(a) Halogen (b) LED with white filter 

(c) LED with orange filter (d) LED with green filter 

Fig. 10 Patch images extracted from Fig. 9
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(0.2981, 0.7631, 0.5034) as the hemoglobin vector for the

four subjects. These vectors are adequate for separating the

melanin and hemoglobin components in the case of Japa-

nese subjects. By adding the minimum vector of melanin

and hemoglobin, bias vectors were extracted from the skin

color images of the four subjects and the standard bias es
was calculated as the mean of biases for the four subjects.

The four subjects were also photographed under the

other four light sources. Figure 9 shows examples of facial

images taken under the halogen light source and under the

LED light source with white, orange, and green filters.

Patch images were extracted as shown in Fig. 10, and the

observed bias eo of the facial image was extracted from

each patch image. Then, by exchanging the observed bias

vector with the standard bias vector, the facial color image

was corrected as if the image was taken under the xenon

light source.

4.2 Evaluation results

This section evaluates the effectiveness of our proposed

method. We photographed subjects next to a Macbeth color

checker. We cut off the area of the light skin from the color

checker in the taken images. We calculated the mean pixel

value for the area of light skin and then evaluated the

differences in the mean pixel value between the xenon

image and color-corrected images. The image taken under

the xenon light source was the ground truth of the cor-

rection of each image using the AWB method.

In this paper, we evaluated the color shift from the

ground truth to the corrected image using Da* and Db* in

the CIELAB space. DL is not directly related to the illu-

minant color, and we thus excluded DL when comparing

the color differences. We express DE as the Euclidean

distance between the ground truth color and the corrected

color in the two chromatic dimensions a* and b*.

Figure 11 shows the facial images corrected employing

the proposed method. All images are clearly similar to the

image taken under the xenon light source shown in

Fig. 11a. Figure 12 shows the checker images extracted

from the input images (Fig. 11) and the corrected images

(Fig. 12). Figure 13 shows the color shift between the

checker images taken under the xenon light source and

those taken under the other four light sources. The red and

gray bins represent the hue differences obtained using the

proposed method and conventional method, respectively.

The conventional method uses the mean RGB value of the

Japanese facial color, considering that the Japanese face is

(a) Halogen (b) LED with white filter 

(c) LED with orange filter (d) LED with green filter 

Fig. 11 Color-corrected facial

images obtained from Fig. 9

using our proposed method

24 Opt Rev (2017) 24:17–26
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the key object introduced in Sect. 2.1. The processing flow

of this method is as follows. In advance, the mean RGB

value of the Japanese facial color is calculated from facial

images of four subjects taken under the xenon light source.

In the color correction step, the input facial image is color

corrected by matching the facial RGB values in the image

taken under the xenon light source with facial RGB values

in the input image. The performance of this method is thus

affected by differences in individual skin color.

As shown in Fig. 13, considering all light sources, the

proposed method realizes better color correction than the

conventional method. The result shows that the perfor-

mance of the proposed auto white balance algorithm is not

affected by differences in individual skin color.

5 Conclusion

This paper presented an AWB algorithm using a pigmen-

tation separation method. The pigmentation separation

method separates the human skin color into the

components of melanin, hemoglobin and shading. We use

the skin color property that the vector of minimum melanin

and hemoglobin densities under the same light source is

uniform among individuals of the same race. The bias

vector calculated as the minimum vector of pigment

components thus represents the color of the light source.

We performed experiments for the color correction of

facial images and the evaluation of the effectiveness of

the proposed method. We photographed four Japanese

people under five light sources, and corrected the facial

images so that they matched images taken under a xenon

light source. The results of the experiments demonstrate

the superiority of the proposed method over conventional

color correction.

As shown in this paper, a white balance function can be

realized when the faces of Japanese people are pho-

tographed. The subjects in our experiments were Japanese

people. We expect that the proposed method can be

adapted to Southeast Asians having facial pigmentation

similar to that of Japanese people. However, Caucasians

and African Americans were not accounted for in the

present work. We will, therefore, endeavor to develop the

proposed color correction method for people of various

races as future work.
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