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Abstract. We evaluated a method for building a psychophysically based model of graininess 

perception for a device-independent graininess-reproduction system. The model was developed 

through experiments that explored the relationship between physical parameters of graininess 

objects, subjective rating, and the maximum luminance of the displays used to present the objects. 

The graininess model was generated via multiple regression analysis of the parameters and was 

used to calculate curved surfaces for which graininess perception was equalized. Even if the values 

of maximum luminance on the display is changed in the model, the value of graininess under the 

changed luminance is hold by changing the physical parameters of graininess generation in the 

model. We found that the proposed model and process for device independent graininess 

reproduction were effective for our adopted displays with various maximum luminance. 
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1. Introduction 

Recently, electronic commerce (e-commerce) such as online shopping has become 

commonplace with improvements in high-speed networks and computer science. In 

particular, e-commerce has benefitted from the development of computer graphics (CG) 

techniques and rendering engines. Excellent representation of commercial products excites 

consumer interest, and a high-quality accurate representation makes real transactions 

possible in a virtual world. In this system shown in Figure 1, an image of a product is taken 

with a digital camera and is then displayed on a distant device through a network. Recently, 

displaying a rendered CG image of a product instead of a single digital photograph has 

become widespread in e-commerce trading. This is accomplished by uploading information 

such as the shape of the product to a server. With the proper design, consumers can browse 

product images interactively by controlling the viewpoints and lighting conditions as they 

wish. The CG image data are recorded and stored by the input system and distributed 

throughout the network. Because consumers browse product images in this way before 

purchasing the product, faithfully reproducing the product through CG is extremely 

important. However, the appearance of the product might differ depending on the 

environment in which the product image is viewed. For example, differences in appearance 

can be caused by varying characteristics in the consumer’s display, such as maximum 

luminance and color reproduction range. When this happens, it can lead to customer 

dissatisfaction and an increase in returned goods, which are negative outcomes for both 

corporations and customers. This problem is outlined in Figure 2. Differences in appearance 

are a serious problem for items such as clothes and art objects because how they look is a 

major factor in their purchase. 
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Accurate color reproduction is the most important factor affecting the commercial value of 

products and is a point of quality control for e-commerce. The color-matching technique is a useful 

method for fitting the diffuse color and texture of commercial products. This technique uses 

numerical calculations to calibrate color between the input device and the display. The appearance 

of surface graininess is also an important factor for product images. Fine-grained surfaces that 

appear coated and polished are the best for giving the impression of “premium” quality. Moreover, 

this characteristic of surface graininess involves the sense of touch and hold. Because the shape 

and function of a product are important to us as consumers, we must be sensitive and pay attention 

to the appearance of surface graininess, even in images designed for representations in e-commerce. 

Although an appearance-matching method similar to color matching should be developed to 

further e-commerce growth, the numerous parameters and complicated handling make managing 

surface graininess difficult. In this paper, we address this issue by proposing a device-independent 

graininess-reproduction method that matches the appearance of graininess by the control of CG 

images (Fig. 3). We derive the perceptual space for surface graininess via an experiment that 

determines the magnitude of subjective rating. Some factors that change the appearance of surface 

graininess are resolution, maximum luminance, and color reproduction range. In this preliminary 

study, we controlled the height and distribution of the CG image bump profile according to the 

maximum luminance. The proposed method can be used for a device-independent graininess-

reproduction process that manipulates the physical parameters mentioned above to match the 

graininess on the display with different maximum luminances. 
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Figure 1. The e-commerce process 

 

 

Figure 2. Differences in appearance caused by varying display characteristics 
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Display B 
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Figure 3. Outline of the graininess-matching procedure 

 

2.  Related Work 

The surface shape an object is important for understanding and interpreting the object’s 

appearance and other characteristics. Several studies1-3) have investigated the appearance of 

graininess using CG objects. Glossiness is another characteristic that changes how objects are 

perceived and which can be altered by manipulating physical parameters. The current study was 

inspired by several studies that focused on glossiness. Some1) have studied gloss in which 

graininess is perceived as a result of light scattering. Like graininess, the glossiness of an object 

depends on the change in maximum luminance of the device used to display it. Therefore, we must 
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distribute images to consumers that do not change in glossiness depending on the device or 

display environment, especially when the items for which appearance such as color or gloss 

is emphasized.   

 Pellacini et al.4) have developed a new model to quantify the perception of gloss on 

an object’s surface. They conducted two experiments that explored the relationship between 

physical parameters and the perceptual dimensions of a glossy appearance. The parameters 

of an object’s geometry that are related to the perception of glossiness are not well known 

and the number of factors is likely quite large. However, narrowing the number down to a 

few parameters that contribute the majority of the perception might be possible. In the first 

experiment, they used a pair-comparison method to reveal the dimension of gloss perception 

for simulated painted surfaces. They visualized the data using multidimensional scaling 

techniques5) and found perceptual dimensions that express two important features related to 

glossiness. These features are denoted by Eq. 1. 

𝑑 = 1 –  𝛼 

𝑐 = √ 𝑠 + 𝑑/2
3

√ 𝑠/2
3

 
(1) 

where d and c are perceptual dimensions, ρd is the object’s diffuse reflectance, ρs is the specular 

reflectance, and αis the spread of the specular lobe, all of which are introduced by Ward’s 

anisotropic BRDF model6,7) The dimensions d and c are qualitatively similar to the contrast gloss 

and distinctness-of-image (DOI) gloss observed by Hunter8).  

 In the second experiment, Pellacini et al.3) determined the relationship between the 

perceptual dimensions for glossy appearance and the physical parameters used to describe 

the reflectance properties of glossy surfaces. They evaluated two kinds of objects described 
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by c and d which were related to physical dimensions such as ρd, ρs, and α, and they used subjective 

ratings to estimate the relationship between the physical qualities of the stimuli and human 

perception. The experiment was useful because it quantified glossiness by asking observers to 

provide numerical answers regarding the CG image of the glossy object. From this experiment, 

they were able to compare the objects described with the physical parameters to the perceptual 

dimensions. This property of the model might make it easier to create objects that are perceived to 

have the same glossy appearance. 

Gloss perception was also quantified by Ikeda et al.9) who used an experimental approach to 

reproduce equally glossy objects with CG even if the objects were presented on displays with 

different maximum luminances. They prepared images with differing intensity (A1) and spread of 

the specular reflectance (A2) (from Phong’s model10)). Then, they varied the maximum luminance 

Vmax of the display and used a magnitude-estimation method to evaluate how glossy the items in 

the images were. The multiple regression analysis produced the model denoted by Eq. 2 

,3.764.5104.17.54= max2
2

1  VAAG  (2) 

where the coefficient of determination (R2) was 0.803. Thus, this model accounted for a good 

proportion of the variance in the dependent variable. The model indicates that the perceptual gloss 

G can be expressed with the physical gloss parameters A1, A2, and Vmax. Therefore, an equal sense 

of gloss can be achieved by adjusting A1 and A2 depending on the maximum luminance of the 

display. However, the model is greatly affected by the radiance of the display. This factor can be 

pre-defined in a color management system such as sRGB or ICC.  
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3.  Development of Graininess Space 

3.1 Generation of graininess stimuli 

Our experiment was designed to determine the relationship between perception and 

physical elements than comprise graininess. Therefore, we reproduced various graininess 

patterns on objects using a CG renderer. For the first challenge, we specified that the 

material object be made by mat. In order to produce the graininess, we used a bump-

mapping technique. This technique can render ruggedness on a flat object by changing the 

pixel value according to a normal map. In this process, the direction of reflected light is 

changed falsely according to the change in the texture’s pixel value. Although the surface 

of the actual object is flat, it is possible to make it appear rugged by changing the appearance 

of the object with shading and shadow. Figure 4 depicts a rendering result produced by 

bump mapping. On our first attempt, some observers pointed out that the graininess values 

differed depending on the region within the image. This difference is assumed to have 

occurred because of binary noise in the generation algorithm. Therefore, we added Gaussian 

noise so that perception of graininess in the image would follow a normal distribution. 

 We anticipated that the depth of ruggedness and the size of the grains would have 

a large effect on the perceived graininess of the rendered image. In our reproduction method, 

the change of depth for ruggedness is generated by changing the pixel value of the normal 

map with Gaussian noise. Additionally, the size of the grains was varied through dilation in 

the morphological processing. Dilation is an image processing technique used to expand an 

element of a digital image. By expanding the element in the normal map during bump 

mapping, the size of the grains are larger after processing. However, a rapid change of 

ruggedness as shown in Figure 5(a) appears if dilation produces grain that are too large. 
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Therefore, we applied a Gaussian filter to the normal map after the dilation to smoothen the rapid 

change. Figure 5(b) shows the result after smoothing. In our experiment, the standard deviation 

used for the Gaussian filter was empirically decided to be 0.3 times the size of a grain. Moreover, 

we found that perceiving graininess was difficult for objects such as those shown in Figure 5(b) 

because of the hollowed-out appearance. By inverting the luminance value of the texture, we were 

able to generate the graininess objects shown in Figure 5(c). We show an enlarged view of the 

graininess object in Figure 5 because the grain can be easily perceived. 

In addition the degree of ruggedness and the size of the grain, we incorporated a parameter 

for the maximum luminance of a display. This parameter is dependent on the maximum pixel 

values of the displayed image. For the implementation of this parameter, the relationship between 

pixel values and the luminance of the display must be checked. We used an EIZO FlexScan 

S2001W monitor, and measured luminance with a chromameter (CS-100A, KONICA MINOLTA, 

Japan). As the result of the measurement, we obtained the characteristic curve denoted by Eq. 3.  

,257.0003.0001.0 2  PPL
 

(3) 

where the coefficient of determination (R2) was 1.00, L is the luminance, and P is the pixel value 

of the display. Eq. 3 assumes that changes in the maximum pixel values are variations in the 

maximum luminance of the displays. Therefore, we can adjust the graininess image according to 

the maximum pixel value in the display. 

 Because graininess varies according to the pixel value of the texture image used for bump 

mapping, the depth of ruggedness and the size of the grain can be manipulated by applying image 

processing to the texture. As shown in Figure 6(a), the depth of ruggedness can be increased by 

widening the scale of the pixel values. Further, the size of the grains can be increased by applying 

a dilation process to the texture as shown in Figure 6(b). Depending on the display, different 
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maximum luminance values can be assumed by lowering the pixel value of the whole 

stimulus. The change in the maximum luminance value is shown in Figure 6(c). 

 

 

 

Figure 4. The bump-mapping process 

 

   

(a) (b) (c) 

Figure 5. A graininess object before processing (a), after smoothing (b), and after inversing 

the luminance (c). 
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(a) 

   

(b) 

   

(c) 

Figure 6. Change in the depth of ruggedness (a), size of the grains (b), and maximum 

luminance (c) for a graininess object. 

 

3.2 Subjective rating  

The purpose of our experiment was to create a perceptual space to quantitatively control 

graininess. To achieve this, we designed an experiment based on the magnitude-estimation 

method—a psychophysical scaling technique that can reveal functional relationships between the 

physical properties of a stimulus and its perceptual attributes.  

Observers are university students of men and women corrected to normal or normal eyesight. 

The number of participants was 9, and we performed same experiments for each observer. 

Observers observed pairs of graininess images that were generated by a CG renderer. These images 
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were presented on a black background in a darkened room. The distance between the 

observer and monitor was about 40 inches, which was 3 times the height of display (Fig. 7).  

Each experimental parameter for the images had three levels (Fig. 8). The depths of 

ruggedness (Amplitude) values (A) were 64, 128, or 256, the size of grain values (S) were 

2, 3, or 4, and the maximum luminance values (L) were 11, 24, or 35. We randomly 

presented the 27 stimuli (3 amplitudes  3 sizes  3 luminances) to the observers and asked 

them to rate the graininess of each object on a scale of 0 to 100. Before the experiment, 

typical 0-graininess and 100-graininess objects were presented as reference. We normalized 

each observer’s ratings from 0 to 1 to account for personal differences in the range of 

judgments (Eq. 4). 

,normalized
MINMAX

MINV
V

i




  (4) 

where Vnormalized is the result of a observer’s subjective rating after normalization, Vi is their 

evaluation score for each image, MAX is the maximum value they used, and MIN is the minimum 

value they used. 

 

 

 

 

Figure 7. The conditions of the experiment. 
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3.3 The model for graininess reproduction  

In the previous section, we performed experiments to evaluate a total of 27 stimuli by 

manipulating physical parameters (A, S, L) affecting the perception of graininess for observers (9 

people). We summarize the rating results in Table 1. The table contains the physical parameters of 

the graininess objects and the average of the rating values for these experimental stimuli. The 

evaluation values of these graininess are shown in Figure 8 in 4D. Since there are 4 rows in Table 

1, this figure is represented by 4D including a color bar for the graininess. 

Equation 5 shows the result of a multiple regression analysis on the data obtained from the 

graininess rating task. 

,0.1210.006  0.4800.254  －－ LSAG 3   (5) 

where the coefficient of determination (R2) was 0.916. The relatively high R2 indicates that this 

equation is reliable. G is the perceived graininess that is objective variable in Equation 5. Next, p-

value is calculated to investigate a significant difference that each explanatory variable can explain 

the objective variable. Generally, when the p-value is less than 5% or 1%, the null hypothesis is 

rejected as false and the alternative hypothesis is adopted. Therefore, we summarize the p-value 

for each explanatory variable of Equation 5 in Table 2. Since the p-values for explanatory variables 

other than the intercept of the objective variable axis is less than 1%, it can be said that they cannot 

explain the objective variable with a probability of 1% or less. In other words, it is significant in 

explaining the objective variable with each explanatory variable. 

This graininess model made it possible to generate objects that feel equal graininess on 

arbitrary curved surface. Figure 9 indicates these results as normalized graininess G = 0.2, 0.4, 0.6, 

0.8, and 1.0. These surfaces can be used to equalize the perception of graininess by adjusting the 

values for A, S, and L. Therefore, when we select the value of A or S along the same surface 
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according to the arbitrary maximum luminance of the display, a device-independent 

reproduction for graininess can be acquired. Larger sizes of grains are perceived as less 

grainy because the coefficient for S is negative. Conversely, large values for A and L lead to 

larger perceived graininess. The transition between the surfaces in Figure 9 represents these 

trends well. The shapes of the surfaces representing different levels of graininess are almost 

the same. The surfaces are drawn within the domain of the parameter treated in the 

experiment such as A, S and L, and the range for each coordinate axis in the graph is set 

without estimation. 
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Table 1. Physical parameters of the stimuli and mean of the rating value for these stimuli 

Amplitude (A) 
Size of Grain 

(S) 

Maximum 

Luminance (L) 
Graininess (G) 

64 2 144 0.19 

64 2 202 0.40 

64 2 247 0.50 

64 3 144 0.09 

64 3 202 0.08 

64 3 247 0.19 

64 4 144 0.06 

64 4 202 0.00 

64 4 247 0.10 

128 2 144 0.70 

128 2 202 0.79 

128 2 247 0.85 

128 3 144 0.43 

128 3 202 0.51 

128 3 247 0.63 

128 4 144 0.28 

128 4 202 0.40 

128 4 247 0.50 

256 2 144 0.79 

256 2 202 0.84 

256 2 247 0.90 

256 3 144 0.78 

256 3 202 0.82 

256 3 247 0.86 

256 4 144 0.60 

256 4 202 0.67 

256 4 247 0.79 

 

Table 2. P-values for each explanatory variable 

 p-value 

 1.14E-12 

 8.8E-07 

L 0.001563 

Bias value 0.161788 
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Figure 8. Mean of the rating value for each stimulus 

 

 

Figure 9. Surfaces of an equal graininess perception. 
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4.   Management of Graininess Appearance 

In this section, we use the model to adjust the image and equalize the perceived graininess. 

graininess. The graininess value is held constant by changing the physical parameters A and S in 

the graininess generation model according to maximum luminance value of the display being used. 

 

4.1 Matching graininess using the model  

As an example of how we modified the perceived graininess, consider the graininess object 

generated by the parameters: A = 128, S = 3, and L = 35 shown in Figure 10(a). This object has a 

graininess score (G) of 0.54 on the graininess surface. We defined this image as the original image 

in this evaluation. A represents the depth of ruggedness on the surface of the graininess object. 

This is defined as the amplitude in this paper. S is the size of the grains of the graininess object. A 

and S control the texture in the bump mapping by image processing. L represents the maximum 

luminance value of the display used in the experiment. In this method, the same display was used 

to avoid the influence due to the difference in display characteristics. Therefore, L virtualizes the 

change in the maximum luminance value of the display by scaling the pixel value of the scene 

image including the graininess object. In this method, A, S and L are generated with the same value 

in the object. A detailed explanation is given in 3.1.  

Next, we generated the modified example for a display with low maximum luminance. This 

object was rendered by changing the parameters to: A = 128, S = 3, and L = 11 shown in Figure 

10(b), in which only the maximum luminance is lowered. We assume that changes in the maximum 

pixel values in the images are variations of the maximum luminance of the displays. The G of this 

example was 0.43, which was the average of added subjective rating to confirm graininess. The 

lower luminance clearly resulted in a lower perception of graininess. This result indicates that 



18 

observers have difficulty sensing the graininess when the maximum luminance of the display 

is low. Human has a difficulty to discriminate features of texture in dark scenes. In a bright 

display, the contrast is large that expresses features such as the amplitude of the graininess 

object. On the other hand, the contrast is small in a dark display. Therefore, it can be said 

that the features of a texture can be recognized more clearly in the bright display. However, 

from the viewpoint of the Just Noticeable Difference (JND), it can be said that the difference 

in features can be more discriminated in dark displays. In this experiment, the observers 

could detect the little graininess with a dark display. Because of the balance between the 

contrast and the JND that are events by the human sensory organs in eyes, the observer 

noticed the difference even in a dark display. 

Next, we modified the image so that its perceived graininess would equal that of the 

original image. In the first operation, we define the plane such that all values are equivalent 

according to the maximum luminance L = 11. The cross line between this plane and the 

graininess space is calculated as shown in Figure 11. Although the graininess for the original 

image decreased with the lower the maximum luminance value, it can be increased to match 

the original perception by changing the physical parameters and returning to this cross line. 

Therefore, we selected three positions: A = 232 and S = 4, A = 179 and S = 3, and A = 126 

and S = 2 on the equal graininess surface for G = 0.54. The three right images in Figure 11 

show the results. The proposed operation was effective in equalizing graininess perception 

even when the luminance of the display was different from the original display. 

To evaluate whether the graininess of the modified objects was equal that of the 

original object, we again asked observers to rate the graininess as described in section 3. 

After normalizing and averaging the ratings, the resulting evaluation scores were G = 0.54, 
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G = 0.58, and 0.57, for the three sets of A and S values, respectively. We can see that the change 

in ruggedness A is more important for generating the equalized perception for graininess than is 

the change in gain size S. 

  

(a) (b)  

Figure 10. Sample of objects to revise the graininess. (a) Part of the graininess object with 

high maximum luminance, mean = 129, variance = 324, skewness = 0.006, kurtosis = 2.98. (b) 

Part of the graininess object with low maximum luminance, mean = 75, variance = 40, 

skewness = -0.271, kurtosis = 3.57 

 

 

Figure 11. Schematic process for equalizing graininess G to 0.54. 
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4.2 Evaluation for the Accuracy 

The graininess evaluation scores obtained by magnitude estimation is uneven because 

subjective rating is hard to compare under different luminance conditions. Therefore, we must 

check whether the numerical difference in evaluation score (G = 0.54 ~ 0.58) for the revised 

image is an appropriate result. We considered the variance of the graininess scores and 

determined the acceptable range. A standard deviation was calculated from the evaluation 

scores for each of the 27 images used in the rating task as shown in Table 3. The Table 3 

indicates a tendency for variance to be large if both the size of the grains and the maximum 

luminance are small (Fig. 12). Similarly, Figure 13 indicates that the variance is small when 

both the size of the grains and the maximum luminance are large. The average of each 

graininess object’s standard deviations (SDave) was 0.12. A difference in evaluation score for 

a revised image is therefore inappropriate if it is more than 0.12. In the example above, the 

target graininess for the image after revision was G = 0.54, and thus acceptable evaluation 

scores would be in the range of 0.42 to 0.66 (0.54 ± 0.12). Thus, in this paper, the acceptable 

boundary for graininess is within SDave of the target graininess value.  

As shown in Fig 14(c-e), the perceived graininess of the image after revision ranged 

from G = 0.54 to 0.58 (a range of 0.04), which is well within the ± 0.12 boundary. The color 

of the outer frame of the graininess images shown in Figure 14 correspond to what is shown 

in Figure 11. This result is evidence that our proposed method for graininess space is useful 

for matching the perception of graininess even if the maximum luminance of display is 

changed. 
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Table 3. Graininess for the stimuli and its standard deviation 

 

 

 

Figure 12. (left) Image with small grain size and small maximum luminance. (right) Variance 

in graininess perception for 7 observers.  
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Figure 13. Image with large grain size and large maximum luminance. (right) Variance in 

graininess perception for 7 observers. 

 

   

(a) (b) 

   

(c) (d) (e) 

Figure 14. (a) An original image. (b) Lower luminance but before revision. (c-e) After 

revision with three different pairs of grain size and depth of ruggedness. 
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5 Conclusion and Future work 

Here, we produced a psychophysically-based model of graininess perception for generating 

device-independent graininess. This model was used to match the graininess perception across 

displays with varying maximum luminances. The objects generated by the model were perceived 

as having equal graininess with a high accuracy.  

This model is the result based on regression analysis. It is interesting that the result converged 

to the third root. This is because L * indicating the luminance in the CIE L * a * b * color space 

can be represented by the third root of Y indicating the luminance in the CIE XYZ color space. The 

L * a * b * color space is designed to approximate human vision. Among them, the L component 

value is very close to the human perception of brightness. The amplitude (A) in this method 

represents the depth of the ruggedness by the contrast of the pixel value. Therefore, we guess it 

can be said that the difference in brightness of the graininess object leads to the graininess. In the 

future, we will investigate the relationship between the graininess due to the amplitude and the 

graininess due to the difference in brightness. 

This model is useful for cases in which the graininess object is affected by a limited amount 

of luminance. The limitations of our model should be explored with additional evaluations. This 

model is useful for cases in which the graininess object is affected by a limited amount of 

luminance. The limitations of our model should be explored with additional evaluations. •

 Our model has limitations on the generated images. Since this model is an application of 

technology to map uniform graininess, it is preferable to apply to an object with uniform texture. 

As a basic research, we excludes the material appearance other than the graininess. Therefore, this 

model cannot be applied to the material appearance containing other elements such as gloss. The 

fineness / roughness is greatly affected by image contrast. However, the modulation of the texture 
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is effective only under the condition that the intensity contrast or the shape of the intensity 

histogram match the characteristic of the fine texture.11) Since the size of the device affects the size 

of grain of the graininess object, the device used for the material appearance control is preferably 

the same size as the device before the control. Moreover, our model is only applicable to objects 

with a plane surface. As many kinds of objects with complex shapes exist in the world, future 

studies will have to achieve a more practical way to match appearance so that e-commerce can 

progress.  
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