# Evaluation of the Robustness of Estimating Five Components from a Skin Spectral Image

# 4 Rina Akaho, Misa Hirose and Norimichi Tsumura

5 Graduate School of Advanced Integration Science, Chiba University, CHIBA, JAPAN

6 Abstract. We evaluated the robustness of a method used to estimate five components (i.e., melanin, oxy-hemoglobin, deoxy-hemoglobin, shading, and surface reflectance) from the spectral reflectance of skin at five wavelengths against noise and a change in epidermis thickness. We also estimated the five components from recorded images of age spots and circles under the eyes using the method. We found that noise in the image must be no more 0.1% to accurately estimate the five components and that the thickness of the epidermis affects the estimation. We acquired the distribution of major causes for age spots and circles under the eyes by applying the method to recorded spectral images.

14 Keywords: spectral, skin, melanin, hemoglobin, oxygen saturation, Monte Carlo simulation

# Address all correspondence to: Rina Akaho, Chiba University, Graduate School of Advanced Integration Science,

- 17 1-33 Yayoi-cho, Chiba, 263-8522 Japan; Tel: +81-43-290-3262; E-mail: akasanmail.com@gmail.com

| 19 | A part of this paper was | presented at CIC24, | held in San Diego, CA. |
|----|--------------------------|---------------------|------------------------|
|----|--------------------------|---------------------|------------------------|

#### 1 1 Introduction

2 Skin is a three-layered tissue composed of epidermis, dermis, and subcutaneous tissues and has 3 chromophores, such as melanin, oxyhemoglobin, and deoxy-hemoglobin. The reflectance of 4 human skin depends on the thickness of layers, the concentrations of chromophores, and the shapes 5 of parts. Only the concentrations of three chromophores are mainly related to evaluation in 6 cosmetic field like age spot and dark circles under the eyes.

7 The analysis of diffuse reflectance provides information on tissue activities related to 8 chromophores. This information can be applied to the early detection of skin disease and the 9 monitoring of health. Methods of estimating four components: melanin; blood volume; oxygen 10 saturation; shading (other than surface reflection) have been proposed as follows. Concentrations 11 of chromophores can be treated as parameters and components of the skin structure can be treated 12 as constant as in previous research. Tsumura et al. discussed a method of determining melanin and 13 hemoglobin concentrations by applying independent component analysis to a skin color image<sup>1</sup>. 14 Kikuchi et al. proposed a method of obtaining the hemoglobin oxygen saturation ratio in the face via multiple regression analysis of images recorded with a spectral camera<sup>2</sup>. Many studies have 15 16 applied these methods to estimate the four components (other than surface reflection) linearly from 17 skin color images and spectral images. Meanwhile, Kobayashi et al. analyzed the nonlinear 18 relationship between the absorbance and chromophore concentration of skin by conducting Monte 19 Carlo simulation and using the modified Lambert Beer's law, and reported a method of estimating 20 the optical path length for each layer from the absorbance and the concentration of chromophores and shading <sup>3</sup>. However, this method cannot estimate the optical path length if the concentration 21 22 of chromophores is not given. Even if the concentration is known, the estimation accuracy is 23 insufficient because the concentration is derived linearly by multiple regression analysis. Hirose

et al. therefore proposed a new nonlinear method of estimating three unknown chromophore concentrations, shading, and surface reflection from the spectral reflectance of skin at five wavelengths<sup>4</sup>. The geometric angle and uniformity of the illumination intensity are compensated for by estimating shading and surface reflectance. In reality, however, noise is observed by the effect of the imaging device and the thickness of the epidermis depends on the skin position. In terms of practical use, it is necessary to evaluate the robustness of the method against noise and a change in thickness of the epidermis.

8 The present paper therefore conducts a Monte Carlo simulation to evaluate the robustness of the 9 method used to estimate the five components against noise and a change in epidermis thickness. 10 We also estimate five components from recorded five-band images. Images of age spots and circles 11 under the eyes are captured and analyzed.

12

#### 13 2 Method of Estimating the Five Components

#### 14 2.1 Analysis of the Relationship between Absorbance and Chromophore Concentration

15 Hirose et al. analyzed the relation between the absorbance and chromophore concentration by conducting a Monte Carlo simulation<sup>4</sup>. We first obtain diffuse reflectance data for skin by the 16 17 Monte Carlo simulation of light transport in multi-layered tissue (MCML), as proposed by Jacques 18 et al.<sup>5</sup>. MCML is accomplished by following the propagation of photons in tissue. As shown in 19 Fig. 1, we assumed a two-layered skin model composed of the epidermis and dermis. Five optical 20 parameters, namely thickness t, reflective index n, anisotropy factor g, scattering coefficient  $\mu_s$ , and absorption coefficient  $\mu_a$ , are set in each layer. The thicknesses t of the epidermis and dermis 21 22 are 0.006 and 0.40 cm, respectively, in this work. The reflective index n, scattering coefficient  $\mu_s$ ,

and anisotropy factor g of the two layers have the same values; n = 1.4 while  $\mu_s$  and g are shown in Fig. 2<sup>6</sup>. The absorption coefficient  $\mu_a$  is calculated from the absorption coefficients of chromophores, namely melanin, oxy-hemoglobin, and deoxy-hemoglobin, as

$$\mu_{a.epi}(\lambda) = Mel \times \mu_{a.mel}(\lambda),$$
  

$$\mu_{a.der}(\lambda) = Ohb \times \mu_{a.ohb}(\lambda) + Hb \times \mu_{a.hb}(\lambda)$$
  

$$= Thb \times StO \times \mu_{a.ohb}(\lambda) + Thb \times (1-StO) \times \mu_{a.hb}(\lambda),$$
  
(1)

4 where  $\lambda$  is the wavelength and the subscripts of the absorption coefficient *epi*, *der*, *mel*, *ohb*, and 5 hb indicate the epidermis, dermis, melanin, oxy-hemoglobin, and deoxy-hemoglobin, respectively. The absorption coefficients of chromophores are shown in Fig. 3<sup>6</sup>. The percentages of melanin, 6 7 oxy-hemoglobin, and deoxy-hemoglobin are denoted *Mel*, *Ohb*, and *Hb*, respectively. We input 8 these percentages of chromophores into MCML to acquire the diffuse reflectance of skin, 9  $R_{MCML}(\lambda)$ . The percentages of oxy-hemoglobin and deoxy-hemoglobin are calculated using the 10 blood volume *Thb* and oxygen saturation *StO*. The blood volume is defined as the sum of oxy-11 hemoglobin and deoxy-hemoglobin volumes, Ohb + Hb. The oxygen saturation is the ratio of oxy-12 hemoglobin in the blood and is expressed as Ohb / (Ohb + Hb). We set Mel = 1%, 2%, 3%, 4%, 13 5%, 6%, 7%, 8%, 9%, and 10%; Thb = 0.2%, 0.4%, 0.6%, 0.8%, and 1.0%; and StO = 0%, 20%, 14 40%, 60%, 80%, and 100%; and acquired 300 reflectance spectra data from their combinations.

Hirose et al. converted the reflectance  $R_{MCML}(\lambda)$  to absorbance  $Abs_{MCML}(\lambda)$  by taking the negative of the natural logarithm,  $-\log(R_{MCML}(\lambda))$ . The relationships between the absorbance at 560, 570, 590, 610, and 700 nm and chromophore concentration are shown in Fig. 4. These wavelengths are selected from nine wavelengths by optimization <sup>4</sup>. The *Z*-axis represents the absorbance, while the *X*-axis and *Y*-axis indicate the absorption coefficients of the dermis  $\mu_{a,der}(\lambda)$  and the percentage of melanin *Mel*, respectively. Black dots in Fig. 4 indicate the 300 absorbance spectra  $Abs_{MCML}(\lambda)$ obtained from MCML. To obtain well-fitting curves for the 300 absorbance data spectra, we model the absorbance *Z* as a cubic function of *X* and *Y* for each wavelength:

$$Z = AX^{3} + BX^{2}Y + CXY^{2} + DY^{3} + EX^{2} + FXY + GY^{2} + HX + IY + J,$$
(2)

- 4 where X is  $\mu_{a.der}(\lambda)$ , as defined by Eq. (1), and Y is the percentage of melanin Mel. The coefficients
- 5 A to I and the constant J are determined so as to minimize the residual sum of squares  $RSS_{func}$  for
- 6 each wavelength:

$$RSS_{func}(\lambda) = \sum_{i=1}^{300} [Abs_{MCML}(\lambda, i) - Z(\lambda)]^2, \qquad (3)$$

7 where *Abs<sub>MCML</sub>(i)* indicates the *i-th* absorbance generated by MCML.



Figure 1 Two-layered skin model composed of the epidermis and dermis



Figure 2 (a) Scattering coefficient and (b) anisotropy factor



Figure 3 Two-layered skin model composed of the epidermis and dermis



Figure 4 Nonlinear relationship between the absorbance in Monte Carlo simulation and chromophore concentration at five wavelengths: (a) 560 nm, (b) 570 nm, (c) 590 nm, (d) 610 nm, (e) 700 nm

1

3 2.2 Estimation of Chromophore Concentrations, Shading, and Surface Reflectance from Five-

4 band Images

5 Hirose et al. proposed the extraction of five components (i.e., melanin, oxy-hemoglobin, deoxy-6 hemoglobin, shading, and surface reflection) from five-band images of skin using the cubic 7 function  $Z(\lambda)$  represented by Eq. (2). It is assumed that the five components can be estimated from 8 the spectral reflectance of skin  $R(\lambda)$ . Incident light is deflected or absorbed. The light incident on 9 the skin is divided into reflection from the skin surface and diffuse reflection scattered and 10 absorbed by the chromophores, as seen in Fig. 5. The relationship between the diffuse reflection 11  $R_{df}(\lambda)$  and absorption  $A(\lambda)$  is

$$A(\lambda) = -\log(R_{df}(\lambda)). \tag{4}$$

1 In the case of the Lambert–Beer law, absorbance  $A(\lambda)$  can be calculated from the cubic function

2 of absorbance  $Z(\lambda)$  and shading k as

$$A(\lambda) = Z(\lambda) + k. \tag{5}$$

3 The cubic function of absorbance  $Z(\lambda)$  is defined in terms of the concentrations of the three 4 chromophores in Eq. (2). Diffuse reflection  $R_{df}(\lambda)$  is calculated from Eqs. (4) and (5) as

$$R_{df}(\lambda) = \exp(-(Z(\lambda) + k)). \tag{6}$$

5 The spectral reflectance of skin  $R'(\lambda)$  is therefore defined using the surface reflectance  $R_{sp}$ :

$$R'(\lambda) = R_{df}(\lambda) + R_{sp} = \exp(-(Z(\lambda) + k)) + R_{sp}.$$
(7)

In the presented method, five components are determined so as to minimize the residual sum of
squares *RSS<sub>est</sub>*, expressed as

$$RSS_{est} = \sum_{\lambda} [R(\lambda) - \{ \exp(-(Z(\lambda) + k)) + R_{sp} \} ]^2,$$
(8)

8 and the speed of calculation is about 30 seconds per pixel.

9



Figure 5 Reflection properties of the skin

#### **3** Evaluation of the robustness of the method against noise

2 Spectral reflectance was simulated by Monte Carlo simulation. We set the melanin concentration 3 Mel = 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, and 10%; blood volume Thb = 0.2%, 0.4%, 0.6%, 0.8%, and 1.0%; and oxygen saturation StO = 0%, 20%, 40%, 60%, 80%, and 100%; and acquired 4 5 300 reflectance spectra from their combinations. We added shading and surface reflection to the simulated reflectance. Noise was added to the reflectance map to evaluate the robustness against 6 7 noise. We used a random number from a uniform distribution multiplied by a constant as the noise. 8 In the case that noise is less than 0.1%, the noise is a uniformly distributed random number between 9 0 and 0.001 when the reflectance of a white color board is 1. In the case that noise is less than 10 1.0%, the noise is a uniformly distributed random number between 0 and 0.01. Only noise of three 11 types is added to reflectance in these experiments, to reduce the calculate cost.

The average relative error and the coefficient of correlation between the correct value and the estimated value are shown in Fig. 6. Spectral reflectance data without noise are labeled as "no noise", noise less than 0.1% is labeled "less than 0.1%", and noise less than 1.0% is labeled as "less than 1.0%". In the case that noise is less than 0.1%, the correlation coefficient exceeds 0.8 for all components. However, when noise exceeds 0.1%, the correlation coefficients of the blood volume, shading, and surface reflection are less than 0.6. The accurate estimation of the five components in these experiments therefore requires noise in the image to be 0.1% or less.

19

- 23 24
- 25
- 26 27
- 28



**Figure 6** Average relative error and coefficient of correlation between the correct value and estimated value: (a) average relative error, (b) correlation coefficient. In the case that noise is less than 0.1%, noise is a uniformly distributed random number between 0 and 0.001 when the reflectance of a white color board is 1. In the case that noise is less than 1.0%, the noise is uniformly distributed between 0 and 0.01.

# 2 4 Evaluation of estimation results of the method for varying epidermis thickness

The cubic function  $Z(\lambda)$  is calculated by Monte Carlo simulation to estimate the five components. The thickness of the epidermis is set as 0.006 cm (i.e., 60 µm). The cubic function  $Z(\lambda)$  is therefore the absorbance of skin that has an epidermis thickness of 60 µm. However, the thickness of the epidermis varies depending on location, as shown in Table 1<sup>8</sup>. It is therefore necessary to evaluate the estimation results when the epidermis thickness differs from that of the skin model. We

- 1 generated numerical phantoms with various epidermis thicknesses and evaluated the estimation
- 2 results.
- 3

| Table 1 Mean thickness of the epidermis <sup>8</sup> |                     |  |  |
|------------------------------------------------------|---------------------|--|--|
| Body Site                                            | Mean Thickness [µm] |  |  |
| Palm                                                 | 429.0               |  |  |
| Fingertip                                            | 369.0               |  |  |
| Back of hand                                         | 84.5                |  |  |
| Forearm                                              | 60.9                |  |  |
| Upper arm                                            | 43.9                |  |  |
| Thoracic region                                      | 37.6                |  |  |
| Abdomen                                              | 46.6                |  |  |
| Upper back                                           | 43.4                |  |  |
| Lower back                                           | 43.2                |  |  |
| Thigh                                                | 54.3                |  |  |
| Calf                                                 | 74.9                |  |  |
| Forehead                                             | 50.3                |  |  |
| Cheek                                                | 38.8                |  |  |

#### 4 4.1 Generating a Numerical Phantom for a Spectral Reflectance Map

5 Demonstration of the effectiveness of the proposed method requires a numerical phantom because 6 the chromophore concentration is unknown for actual skin spectral reflectance. We built a 7 numerical phantom by generating a spectral reflectance map with MCML. Figure 7 outlines the 8 generation of a spectral reflectance map.

9 First, to obtain the distribution of chromophores close to real skin, we extracted the chromophore 10 component by applying independent component analysis to an actual skin color image without surface reflection <sup>1</sup>. We captured this image by setting polarization filters in front of the camera 11 12 and positioning light sources so that they were orthogonal to each other. The obtained melanin 13 concentration was divided into three, and the allocated input melanin concentrations of MCML 14 Mel = 3%, 6%, and 9%. The reason for dividing into three values in melanin components was to 15 reduce the calculation cost. Similarly, the obtained hemoglobin concentration was divided into 16 three, and allocated input blood volume of MCML Thb = 0.2%, 0.6%, and 1.0%. Additionally, we 17 considered two oxygen saturations (StO = 70%, 100%) and set the lower oxygen saturation at the 18 center of the map because oxygen saturation is not acquired using by ICA. This region is intended to represent dark shadows under the eyes. To generate a diffuse reflectance map, we assigned
 diffuse reflectance from MCML corresponding to the combination of the melanin concentration,
 blood volume, and oxygen saturation to each pixel.

We next added shading to the diffuse reflectance map to generate images with four components.
By adding surface reflectance to this four-component image, we can generate images that have
five components. The surface reflectance was calculated from the difference between skin color
images with and without surface reflection.

#### 8 4.2 Evaluating the estimation results of the method for varying epidermis thickness

9 We evaluated the estimation results of our method for varying epidermis thickness. Table 1 shows that the epidermis is thicker for the palm and fingertip than for other sites, but ranges 20 to 100 10 11 µm at most sites. The numerical phantom was therefore generated with epidermis thicknesses of 12 20, 30, 40, 50, 60, 70, 80, 90, and 100 µm. Figure 8 shows the five components of the numerical 13 phantom estimated following section 2.2. In the case of a thickness of 60 µm (which is the same 14 thickness as when we calculated the cubic function of absorbance  $Z(\lambda)$  for estimation), the 15 distribution and values of estimations are close to the correct distribution and values for all 16 components. When the thickness of the epidermis is decreased highly, the estimated values and 17 estimated distributions are getting apart from the ground truth. With increase the thickness of the 18 epidermis, the estimated values are also getting apart from the ground truth, but estimated 19 distributions are remained to be close to the ground truth. In the blood volume map, shading map, 20 and surface reflection map, the absolute and distribution errors from correct values increase as the 21 difference of the epidermis thickness increases. In the oxygen saturation map, the distribution of oxygen saturation is almost unchanged even if the thickness of the epidermis is changed. However,
 the estimated values of the oxygen saturation are slightly effected by the values of blood volume.
 Therefore, although it is necessary to generate a cubic function Z(λ) for each thickness to obtain
 the absolute value of the concentration, it is necessary to generate a cubic function Z(λ) for each thickness
 thickness if only the trend of map is required.



Figure 7 Outline of generating a spectral reflectance map



Figure 8 Distribution of five components for varying epidermis thickness

# 1 **5** Estimation from a recorded five-band image

## 2 5.1 Acquisition of a facial image

3 Facial images were acquired to estimate the five components from a five-band image using the 4 proposed method. The experimental environment is shown in Fig. 9. The lighting source was a 5 SOLAX XC-500 sun illuminating lamp (SERIC, Tokyo, Japan) and the spectral camera was an 6 ImSpector camera (JFE Techno Research, Tokyo, Japan). Facial images were acquired in a visible 7 region of 400-700 nm. We used information for five wavelengths (i.e., 560, 570, 590, 610, and 8 700 nm) to estimate the components. Figures 10 and 11 show the recorded images. To evaluate 9 the estimation results, we captured images of age spots and circles under the eyes. Blood 10 congestion is not appeared in these area.



Figure 9 Experimental environment for acquiring facial images



Figure 10 Image of age spots

11

12



Figure 11 Image of dark circles under the eyes

# 2 5.2 Estimation results from the recorded five-band image

Figure 12 shows the estimation results obtained using the proposed method from the recorded fiveband image of age spots. The cause of an age spot is an increase in melanin only, and it is supposed that the blood volume and oxygen saturation are little changed in an age spot <sup>9</sup>. The melanin concentration is high in the region of the age spot. Except in the region that the value of components is saturated, the blood volume and oxygen saturation are considered to be constant.

8 Figure 13 shows the estimation results for circles under the eyes. In the figure, the concentration 9 of melanin is high at the top and bottom of a circle under an eye, and shading is seen throughout. 10 In addition, the blood volume increases toward the inner corner of the eye. This tendency has been 11 demonstrated experimentally <sup>10</sup>. Because oxygen saturation has lower values throughout the image, 12 the concentration of deoxyhemoglobin is high at the inner corner of the eye. Circles under the eyes 13 are therefore attributable to an increase in melanin, in oxy-hemoglobin, and in shading. A 14 comparison of the recorded image and the estimated distribution of surface reflection shows that 15 gloss component has been acquired appropriately from an empirical view point of shape under the 16 eye.



Figure 12 Distributions of five components estimated from an image of an age spot



Figure 13 Distributions of five components estimated from an image of dark circles under the eyes

# 3 6 Conclusion

- 4 We evaluated the robustness of a method used to estimate five components (i.e., melanin, oxy-
- 5 hemoglobin, deoxy-hemoglobin, shading, and surface reflectance) from the spectral reflectance of

1 skin at five wavelengths with respect to noise and a change in epidermis thickness. We found that 2 the noise of the image must be no more than 0.1% to accurately estimate the five components. The 3 epidermis thickness affects the estimation, but rough distributions of the five components can be 4 obtained. We also estimated the five components from captured images of age spots and circles 5 under the eyes using our method. The distribution of the major causation of age spots and circles 6 under eyes can be acquired by applying our method to recorded images. In the future works, 7 experiments should be performed with ultraviolet irradiation and methyl nicotinate whether it can 8 be estimated correctly for changes in skin components. Furthermore, it is necessary to accelerate 9 the experimental program for practical use. In this research, the estimation model was calculated 10 by using scattering coefficient of fixed value, however, it is necessary to investigate the effect of 11 the scattering coefficients by the layer in the future work.

- 12
- 13

#### 14 References

- N. Tsumura, N. Ojima, K. Sato, et al., "Image-based skin color and texture analysis/synthesis
   by extracting hemoglobin and melanin information if the skin", ACM Transactions on Graphics,
   Vol.22, No.3, 770-779 (2003).
- K. Kikuchi, Y. Masuda, T.Hirao, "Imaging of hemoglobin oxygen saturation ratio in the face by
   spectral camera and its application to evaluate dark circles", Skin Research and Technology, Vol.19,
   499-507 (2013).
- M. Kobayashi, Y. Ito, N. Sakauchi, et al., "Analysis of nonlinear relation for skin hemoglobin
   imaging", Optical Society of America, Vol.9, No.13, 802-812 (2001).

| 1              | 4.                                                                                            | Misa Hirose and Norimichi Tsumura, "Nonlinear Estimation of Chromophore Concentrations,         |  |  |
|----------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|
| 2              |                                                                                               | Shading and Surface Reflectance from Five Band Images", Color and Imaging Conference,           |  |  |
| 3              |                                                                                               | Darmstadt, Germany, Proceedings pp.161-166, (10,2015)                                           |  |  |
| 4              | 5.                                                                                            | Wang L. and Jacques S. L., "Monte Carlo Modeling of Light Transport in Multi-layered Tissues in |  |  |
| 5              |                                                                                               | Standard C", University of Texas M. D. Anderson Cancer Center (1992).                           |  |  |
| 6              | 6.                                                                                            | N. Tsumura, M. Kawabuchi, H. Haneishi and Y. Miyake, "Mapping pigmentation in human skin        |  |  |
| 7              |                                                                                               | from multi-channel visible spectrum image by inverse optical scattering technique", Journal of  |  |  |
| 8              |                                                                                               | Imaging Science and Technology, Vol.45, No.5, pg.444-450 (2000).                                |  |  |
| 9              | 7.                                                                                            | Oregon Medical Laser Center, Optical Properties Spectra, http://omlc.org/spectra/               |  |  |
| 10             | 8.                                                                                            | G. Poirier, "Human skin modelling and rendering", M.S. Thesis, University of Waterloo, (2003).  |  |  |
| 11             | 9.                                                                                            | N. Ojima, N. Tsumura, S. Akazaki, K. Hori, Y. Miyake, "Application of Image-Based Skin          |  |  |
| 12             |                                                                                               | Chromophore Analysis to Cosmetics", The Journal of Imaging Science and Technology, vol.48,      |  |  |
| 13             |                                                                                               | No.3, p222-236(2004).                                                                           |  |  |
| 14             | 10.                                                                                           | M. Matsumoto, N. Kobayashi and O. Hoshina, et al., "Study of Causal Factors of Dark Circles     |  |  |
| 15             |                                                                                               | Around the Eyes", IFSCC Magazine, 281-286, (2001).                                              |  |  |
| 16<br>17<br>18 | Ca                                                                                            | ption List                                                                                      |  |  |
| 18<br>19       | Fig                                                                                           | g. 1 Two-layered skin model composed of epidermis and dermis                                    |  |  |
| 20             | Fig                                                                                           | g. 2 (a) is scattering coefficient and (b) is anisotropy factor.                                |  |  |
| 21             | Fig                                                                                           | g. 3 Absorption coefficient of chromophores, i.e., melanin, oxy-hemoglobin, and deoxy-          |  |  |
| 22             | hemoglobin                                                                                    |                                                                                                 |  |  |
| 23             | Fig. 4 Nonlinear relationship between Monte Carlo simulation and chromophore concentration at |                                                                                                 |  |  |
| 24             | fiv                                                                                           | five wavelengths: (a) 560 nm, (b) 570 nm, (c) 590 nm, (d) 610 nm, (e) 700 nm                    |  |  |
| 25             | Fig                                                                                           | Fig. 5 Reflection properties of the skin                                                        |  |  |

- 1 Fig. 6 Average relative error and correlation coefficient between the correct value and the
- 2 estimated value: (a) average relative error, (b) correlation coefficient
- 3 Fig. 7 Outline for generating spectral reflectance map
- 4 Fig. 8 Concentration distribution of five components when the epidermis thickness is changed
- 5 Fig. 9 Experimental environment for acquiring facial image
- 6 Fig. 10 Image of age spots
- 7 Fig. 11 Image of circle under eyes
- 8 Fig. 12 Estimated concentration distribution of five components from image of age spot
- 9 Fig. 13 Estimated concentration distribution of five components from image of circle under eyes
- 10 Table 1 Mean thickness of epidermis