

Figure 1 Mixture and separation of independent signals

Figure 2 Flowchart for the analysis of the human skin image.

Figure 3 Separation of skin image (a)skin color image with 64 x 64 pixels, images of color densities for the (b) first and (c) second independent components.

Figure 4 The obtained data in independent component analysis of spectral image in human skin 津村徳道

Figure 5 Model of spectral absorbance in human skin.

Figure 6 Relative spectral absorption coefficient extracted by independent component analysis of skin image

Figure 7 Spectral absorbance of oxy-hemoglobin and melanin¹⁷⁾

Figure 8 Scattering coefficient and anisotropy factor in epidermis and dermis layer¹⁶⁾

Figure 9 Examples of simulated skin spectral reflectance 津村徳道

Figure 10 Relative spectral absorption coefficient extracted by independent component analysis of simulated skin spectral reflectance 津村徳道

Figure 11 Extracted densities of independent components

Figure 12 Mixture and separation of independent signals with known nonlinear function

Figure 13 Iterative method for extraction of independent component from non-linear mixture

Figure 14 Relative spectral absorption coefficient extracted by proposed independent component analysis of simulated skin spectral reflectance