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To deduce the optical properties, the absorption coefficient aµ and reduced scattering coefficient

'sµ , of turbid medium, Lin et al. ( Appl. Opt. 34 : 2362-1995 ) proposed an oblique incidence reflectometry

in which the diffusion approximation was assumed. In this paper we propose an alternative method which

does not assume the diffusion approximation but uses a Monte Carlo light propagation model. Two features

are extracted from the diffuse reflectance distribution detected on the medium surface, and optical properties

are then estimated by looking up the predetermined table generated by Monte Carlo simulations. The validity

of the proposed method has been confirmed by computer simulations.

Key words: optical property, turbid medium, oblique incidence, diffuse reflection, computer simulation,

Monte Carlo simulation
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1. Introduction

Multiple light scattering phenomena in turbid medium are determined by the optical properties of

the medium such as the refractive index n, the absorption coefficient aµ , the scattering coefficient sµ , and

the anisotropy factor g , in addition to the geometry of the medium. The scattering property is often

represented by a single parameter, ss g µµ )1(' −= called reduced or transport scattering coefficient. In the

case of biological tissue, optical properties of absorption and scattering are known to potentially provide

beneficial information concerning the physiological condition of the tissue. The measurement of tissue

optical properties is therefore an important issue in the field of biomedical optics.

A number of methods have been developed to measure tissue optical properties, including a

conventional method using the integrating-sphere1), methods using steady-state diffuse reflectance, using

time-resolved measurement 2) or frequency-domain measurement 3,4). Among them, the methods using the

steady-state diffuse reflectance of an incident beam have an advantage in the sense that they are noninvasive,

inexpensive, and real-time measurement.

The steady-state measurements have been studied by several research groups 5-10). Most techniques

use a normal incidence, record the diffuse reflectance at some points on the tissue surface with either fiber

optics or a CCD camera, and estimate the tissue optical properties. The diffusion equation or a Monte Carlo

simulation is used for estimating the optical properties. Wang and Jacques proposed using an oblique

incidence and estimating the reduced scattering coefficient 'sµ from the distance between the center of the

diffuse reflectance distribution and the light entry point 8). Lin et al. then presented a method for estimating

both the reduced scattering coefficient 'sµ and absorption coefficient aµ from the shape of the diffuse

reflectance in addition to the distance mentioned above 9). These methods do not use the absolute value of

diffuse reflectance in their estimation, which makes clinical application feasible. The advantage in

introducing the oblique incidence is that the asymmetric shape of diffuse reflection provides additional

information which is not obtainable with the symmetric shape resulting from the normal incidence.

In Lin's method, however, the tissue optical properties to be investigated are restricted because their

estimation is based upon the diffusion equation which is the first order approximation of the radiative
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transfer equation. Since the diffusion theory is based on the assumption of a highly scattering medium, it

cannot accurately model the light propagation in medium with relatively high absorption coefficient.

Furthermore, with Lin's method it is possible that the solution may fall into a nonphysical one by applying a

nonlinear least-squares fitting algorithm to solve the diffuse equation.

In this paper we propose an alternative method using an oblique incidence for measuring tissue

optical properties. Our method uses the Monte Carlo light propagation model rather than the diffusion

equation. Because we do not use the diffusion approximation, we can measure a wider range of tissue optical

properties. Monte Carlo simulation causes a computational burden, and we overcome this by a look-up-table

based approach. Feature extraction from the diffuse reflectance is also a key technique in this method.

2. Method

In this paper we assume that the tissue is a semi-infinite homogeneous medium with absorption coefficient

µa , reduced scattering coefficient µ s ' and refractive index n. We also assume that a laser beam is incident

on the medium surface obliquely and the diffuse reflectance on the medium surface is detected by a CCD

area sensor. We define Cartesian coordinate, x, y, z as shown in Fig. 1 where the origin is the beam entry

point, the x-y plane represents the medium surface and the projection of the obliquely incident beam onto the

medium surface matches the x axis. To estimate two optical properties, µa  , µ s ' from the diffuse

reflectance, we extract two features from the reflectance measured: one is the shift of the center line from the

entry point in the diffuse reflectance profile, and the other is the amount representing the degree of

asymmetry of the diffuse reflectance distribution on the x-y plane. Details of these two features are described

below.

2.1 Center of the Diffuse Reflectance Profile

In this section, we briefly review the method utilizing the center of the diffuse reflectance profile conceived

by Wang and Jacques 8). When a narrow laser beam is normally injected into a semi-infinite homogeneous

turbid medium, the reflection intensity distribution on the medium surface can be approximately represented
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by the intensity distribution that a buried isotropic-scattering point source generates. This scattering point

source is located at a depth equal to one transport mean free path 'mfp which is defined by

｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ )'(1' samfp µµ += .｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ (1)

Similarly, the reflection intensity distribution by a laser beam with oblique incidence is also approximated by

an isotropic point source located at 'mfp away from the beam entry point along the unscattered-light

transmission path. Schematic illustration of this phenomenon is shown in Fig. 1. Due to oblique incidence,

the isotropic point source horizontally shifts a certain amount away from the beam entry point. This amount,

dx , is given by

｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠
)'(

sin

sarel

in

n
dx

µµ
θ

+⋅
= ,｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ (2)

where inθ is the incident angle and reln is the relative refractive index of turbid medium to the ambient

medium. In this paper, we assumed that 4πθ =in and 4.1=reln . The latter is based on the assumption that

the refractive indices of the ambient layer (air) and the tissue are 1.0 and 1.4, respectively. Equation (2) is

rewritten as

｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠
dxnrel

in
as ⋅

+−=
θµµ sin

' .｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ (3)

Note that Eq. (3) provides a relationship between µa  and µ s ' , and that if a graph is plotted as

µ s ' (vertical) vs. µa (horizontal), the function is a linearly decreasing one.

The shift dx can be obtained by the following procedure. A one-dimensional profile of diffuse

reflectance along with the x axis is extracted. By finding the midpoint at each reflectance level and

connecting them, one can draw a curve giving the center line of the reflectance profile as shown in Fig. 2.

While the curve is gradually away from the entry point ( 0=x ) in the high reflectance region, it becomes

almost parallel to the vertical axis in the low reflectance region. The shift of the vertical part from the origin
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corresponds to the distance dx.

In fact, however, the validity of Eq. (2) needs to be reconsidered. Wang and Jacques8) conducted

Monte Carlo simulations and concluded that Eq. (2) is not accurate, especially for relatively high µa values.

They found from the simulation results that the buried scattering point source site is actually at a depth equal

to ( )'35.0/1 sa µµ + rather than 'mfp . Their corrected equation is given as

｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠
)'35.0(

sin

sa

in

n
dx

µµ
θ

+⋅
= ,｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ (4)

where the factor 0.35 is significant for a turbid medium which has moderately high absorption relative to

scattering.

We compared Eqs. (2) and (4) for many combinations of µa and µ s ' by Monte Carlo

simulations, and confirmed that Eq. (4) is more accurate than Eq. (2) as Wang and Jacques insisted. The

results described below were all obtained using Eq. (4).

2.2 Asymmetry of Reflection Intensity

In the above subsection, we presented a linear equation, Eq. (4), relating two optical properties given the

shift amount dx . To determine the optical properties )',( sa µµ uniquely, another relationship between µa  

and µ s ' is needed. Moreover, this second relationship must touch or cross at one point with Eq. (4). Lin et

al. deduced the former function by employing the diffusion theory 9). The second relationship they used was

with the effective attenuation coefficient and given as

｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ )'(3 saaeff µµµµ += .｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ (5)

The value, effµ , is a parameter in the diffuse equation and obtained by the least squares fitting with the

measured diffuse reflectance.

Our method provides a second relationship by extracting a proper feature from the measured

reflectance, looking up a predetermined table of the feature, and interpolating it. The feature extracted is the

degree of asymmetry of the diffuse reflectance and is defined as follows. First, the two-dimensional

reflectance distribution is divided into two regions: forward and backward region for incident beam direction,
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then the integration of each distribution is calculated. Finally, the ratio is calculated by their difference

normalized by their sum.

Figure 3 shows a schematic illustration for calculation of the ratio. In this figure forwardV and

backwardV are the integration of reflection intensity in the forward area and that in the backward area,

respectively. Using these values, the ratio is defined by

｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ )()( backwardforwardbackwardforward VVVVK +−= .｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ (6)

In this paper, we call this ratio K-value. Prior to measurement, K-value is calculated using Monte Carlo

simulations for many combinations of aµ and 'sµ selected so that they cover the possible range of

biological tissue sufficiently. We then put the all ratio data in an array whose horizontal axis is aµ and

vertical axis is 'sµ . We call such an array K-map.

As shown in the next section, we found through computer simulation that the K-value has the

convenient property that the contour giving the same K-value is a right-up curve. This suggests that the

combination of such a curve together with the decreasing function, Eq. (4), yields a unique solution stably.

Given a measured diffuse reflectance, the relationship between aµ and 'sµ is obtained by the

following procedure ( see Fig. 4 ).

1. Calculate the ratio, measuredK , of the turbid medium by applying Eq. (6).

2. On each horizontal line, '' , jss µµ = , find the range of aµ , ],[ 1,, +iaia µµ , which satisfies

)',()',( ,1,,, jsiameasuredjsia KKK µµµµ +≤≤ . Then determine aµ corresponding to measuredK by

linear interpolation of )',( ,, jsiaK µµ and )',( ,1, jsiaK µµ + .

3. Connect these points with lines. The connected line gives the second relationship between aµ and

'sµ .
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3. Simulation experiments

3.1 Preparation of K-Map

The K-map was first prepared by Monte Carlo simulations. The number of photons N launched

in each Monte Carlo simulation is based on the following empirical formula, 

｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ 44 105)'( ⋅⋅+= saaN µµµ .｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ (7)

This formula is based on the report by Kienle et al. 7).

In the simulation, the two-dimensional reflectance intensity is represented discretely as jiP , where

),( ji are integers denoting the location of the pixel. forwardV and backwardV are expressed by

∑
∈

=
forwardRji

jiforward PV
),(

, ｠ ｠

∑
∈

=
backwardRji

jibackward PV
),(

, ｠ .｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ ｠ (8)

Here the forward and backward area were respectively defined by,

{ }120j120-10,-i120-|j)(i, ≤≤≤≤=forwardR  

{ }120j120-120,i10|j)(i, ≤≤≤≤=backwardR , 

where a pixel size is ][01.0][01.0 cmcm × . The center space including an incident point is not used because

such treatment allows easy finding of the forward and backward area in a practical experiment. Note that as

long as the investigation uses computer simulation, one can add the center space as well.

Figure 5 shows a part of the obtained K-map in forms of mesh (top) and contour image (bottom). It

should be noted that the K-value gradually decreases from high aµ and low 'sµ to low aµ and high

'sµ . The contour map in this figure clearly shows that for any given K, 'sµ increases with µa  

monotonically.

Though we showed a part of the K-map whose range covers ][10 1−≤≤ cmaµ and

][25'2 1−≤≤ cmsµ sampled at an interval of ][1.0 1−cm for aµ and ][.01 1−cm for 'sµ , ultimately we

prepared a K-map that covered a wider range. We found that a sparse K-map did not degrade the estimation

accuracy very much because of the smooth variation of the value. Thus, in our ultimate K-map, the range of
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absorption and reduced scattering coefficients covered is ][50 1−≤≤ cmaµ and ][25'2 1−≤≤ cmsµ . This

range is sparsely sampled at the µa = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0, 4.0, 5.0 and

µ s '= 2, 3, 4 , 5, 10, 15, 20, 25.

3.2 Validation

｠ To confirm the validity of the proposed method, we performed computer simulations. The confirmation

procedure is as follows:

(1) Give some specific optical properties )',( sa µµ to the Monte Carlo simulations and determine the

reflection intensity distribution.

(2) Apply the proposed method to the generated reflection intensity distribution to obtain the estimated

optical properties, denoted by )'ˆ,ˆ( sa µµ .

(3) Calculate the relative error by

'/''ˆ,/ˆ ssssaaaa EE µµµµµµ −=−= ,

and evaluate the method.

｠ Table 1 shows the results of estimation for semi-infinite homogeneous medium with 18 different

combinations of )',( sa µµ . It includes the center of diffuse reflectance curves and K-value. The mean

relative error in shift dx is 3.0%. The relative error for the absorption coefficient aµ is 3.6% on average

and mostly within 6%. The relative error for reduced-scattering coefficient 'sµ is 3.1% on average, which

is very close to the error in dx . Figure 6 shows the error in 'sµ against the error in dx . The graph clearly

shows the strong correlation between these two errors. This suggests that the accuracy in estimation of 'sµ

is mainly subject to the accuracy in estimation of dx . No such a remarkable correlation was found between

the error of aµ and dx .

We briefly discuss here the accuracy in practical measurement of dx . With a sufficiently large

number of photons, the diffuse reflectance profile as shown in Fig. 2 gives a stable center line, and therefore

a stable value of dx . Practically, however, there is a limitation in the number of photons, which leads to the
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fluctuation of light intensity in the region far from the beam entry point and therefore causes an error in

determination of dx . We actually performed Monte Carlo simulations in which the fluctuation of measured

dx against the number of incident photons was examined and confirmed that the mean error of dx

increases as the number of photons decreases. The number of photons required to obtain an accurate dx in

actual measurement depends on the characteristics of the imaging system such as quantum efficiency and

performance of the AD converter, as well as the optical properties of the medium under test. More detailed

investigation considering practical experiments is required on this issue hereafter. As another possible factor

which might affect the accuracy of dx , the size of the incident beam should be addressed as well.

Theoretically, however, it was shown by Wang and Jacques 8) that the shift value is independent of the size of

the incident laser beam if the beam has a mirror symmetry about the y axis and if the size of the laser beam is

smaller than the distance between the observation points and the incident point. We believe that under a

normal measurement situation these conditions hold, therefore the error due to the size of incident beam can

be ignored.

Figure 7 shows the relative error in absorption and reduced scattering coefficient estimation against

the parameters aµ given to the Monte Carlo simulation. It is seen that, over the wide range of aµ , the

amount of the error is stable. The proposed method achieves good accuracy for a wide range of )',( sa µµ .

This is due to not using the diffusion approximation. In Lin's paper9), only the narrow range of

][6.02.0 1−≤≤ cmaµ and ][10'4 1−≤≤ cmsµ was presented, where the error of aµ was 2.1% on

average and the error of 'sµ was 1.2% on average. This accuracy is better than ours. However, since their

method is based on the diffusion approximation in determining the effective attenuation coefficient, its

accuracy would be poorer in the range of higher absorption coefficient. We will demonstrate this problem

due to the diffusion approximation using computer simulations. Assuming normal incidence of a laser beam

for simplicity, diffuse reflectance was obtained by both the diffusion theory and Monte Carlo simulation for

two cases of optical properties:(1) ][10'],[5.0 11 −− == cmcm sa µµ , (2) ][5'],[4 11 −− == cmcm sa µµ .

The latter is a case where the absorption coefficient is relatively large. The results are shown in Fig. 8. The
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discrepancy between the diffusion theory and the Monte Carlo simulation is especially remarkable in the

region near the beam entry point in case (2). This discrepancy is even more serious because the region far

from the beam entry point cannot be used because of the extremely weak intensity of reflection. It is widely

recognized that Monte Carlo simulation provides a good prediction of real light propagation. From this

example, the superiority of the proposed method using Monte Carlo simulation would be obvious.

The method presented requires a considerably long time for preparation of the K-map. Actually, it

took about 20 minutes on average to calculate one K-value with a 450MHz Pentium-II PC. Calculation

time is highly dependent on the optical coefficients, however, this is not a serious problem because the

calculation is required only once.

4. Conclusions

We have proposed an alternative method to estimate the absorption and reduced scattering

coefficients. In our method a Monte Carlo light propagation model rather than the diffusion equation is used.

Using this approach, a wide range of optical properties can be estimated with high accuracy. Moreover, our

method does not employ a nonlinear regression algorithm. Thus the correct solution is stably obtained

without falling at any unwanted local solutions. The validity of our approach was confirmed by computer

simulations. As a next step we are currently preparing a phantom experiment to make sure of the

effectiveness of the described method.
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Figure captionFigure captionFigure captionFigure caption    

 

Fig. 1. Schematic illustration of oblique incidence and coordinate definition. 

 

Fig. 2. Diffuse reflectance profile along with x axis and calculated center line of the profile with symbol 

□. The profile shown is an example obtained by the Monte Carlo simulation mentioned in section 

3. 

 

Fig. 3. Schematic illustration of calculation of the ratio, K. 

 

Fig. 4. Part of the K-map obtained by Monte Carlo simulations and an example of interpolated function 

giving a specific K-value. 

 

Fig. 5. K-map for the range of ][10 1−≤≤ cmaµ and ][25'2 1−≤≤ cmsµ . 

 

Fig. 6. Relationship between the estimation error of 'sµ and that of dx . There is a strong correlation between

them. 

 

Fig. 7. Relative error in estimation of aµ and 'sµ against given values of aµ . �, Absorption coefficient; �,

Reduced scattering coefficient. 

 

Fig. 8. Comparison in diffuse reflectance between Monte Carlo simulation and the diffuse equation. 

Normal incident beam is assumed for simplicity. (a) Case that ][10'],[5.0 11 −− == cmcm sa µµ ,(b)

Case that ][5'],[4 11 −− == cmcm sa µµ , (c) Relative error of reflectance with the diffuse equation to

Monte Carlo simulation in two cases. 
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Table 1 Result of estimation for 18 specific media. The 'expected values' of aµ and 'sµ refers to the

parameters given to the Monte Carlo simulations for diffuse reflectance generation. The expected values of dx

refers to those calculated by Eq. (4) given by the aµ and 'sµ parameters.

Table 1

Expected values

[cm-1]

dx

[cm]

K

[AU]

Estimated values

[cm-1]

Relative error

Ea[%] Es[%]

aµ 'sµ Measured

values

Expected

values

Measured

values
aµ 'sµ aµ 'sµ

0.2 6.0 0.0854 0.0832 0.297 0.198 5.844 1.0 2.7

0.8 6.0 0.0789 0.0804 0.397 0.816 6.115 1.9 1.9

1.5 6.0 0.0776 0.0774 0.465 1.541 5.972 2.7 0.5

2.3 6.0 0.0740 0.0742 0.522 2.321 6.014 0.9 0.2

3.2 6.0 0.0709 0.0673 0.568 3.500 6.277 9.4 4.6

4.2 6.0 0.0676 0.0676 0.603 4.335 5.949 3.2 0.9

0.2 12.0 0.0418 0.0424 0.251 0.214 11.834 6.7 1.4

0.8 12.0 0.0411 0.0398 0.333 0.787 12.411 1.6 3.3

1.5 12.0 0.0403 0.0395 0.393 1.571 12.221 4.8 1.8

2.3 12.0 0.0394 0.0396 0.440 2.341 11.947 1.8 0.4

3.2 12.0 0.0385 0.0377 0.480 3.161 12.197 1.2 1.6

4.2 12.0 0.0375 0.0358 0.518 4.325 12.585 0.6 4.9

0.2 18.0 0.0280 0.0304 0.222 0.187 16.565 6.9 8.7

0.8 18.0 0.0276 0.0286 0.297 0.824 17.378 2.9 3.6

1.5 18.0 0.0273 0.0281 0.348 1.475 17.439 1.7 3.1

2.3 18.0 0.0269 0.0251 0.391 2.487 19.285 8.1 7.1

3.2 18.0 0.0264 0.0246 0.431 3.516 19.303 9.9 7.2

4.2 18.0 0.0255 0.0259 0.463 4.192 18.325 0.2 1.8

 

 


