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ABSTRACT 

We propose a technique for estimating gene expression values for duplicated data 

on cDNA microarrays. In the scatter plots, the distribution is constructed from a 

mixture of normal two-dimensional distributions, which represent fluctuations in 

gene expression values due to noise. An EM algorithm is used for estimating the 

modeling parameters. The probability that duplicated data is shifted by noise is 

calculated using Bayesian estimation. Six data sets of rice cDNA microarray assays 

were used to test the proposed technique. Genes in the data sets were subjected to 

clustering based on probability of true value. Clustering successfully identified 

candidate genes regulated by circadian rhythms in rice.
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1 Introduction 

Microarray techniques have recently allowed biological and medical 

researchers to simultaneously investigate thousands of hybridizations.P

1,2)
P However, 

down-scaling an experiment makes it more sensitive to internal and external 

fluctuations, P

3)
P and microarray experiments involve a large number of error-prone 

steps that lead to a high level of noise in the resulting data.P

4-7)
P To compensate for 

fluctuations in the values observed in cDNA microarray, genes are frequently 

duplicated and arranged at different spots on the glass slide.P

8,9)
P Duplicated data 

measured at two spots for a given gene is often averaged in order to determine gene 

expression values. However, average values do not always properly account for the 

influence of noise, and thus taking noise into consideration while determining gene 

expression values is important. 

Scatter plots of double-spotted signals obtained from cDNA microarrays 

represent the magnitude of fluctuations and correlations between the duplicated 

spot data (Fig. 1). In the microarray used in this study, double-spotted genes were 

arranged on both the left and right sides of the slide glass. The points in Fig. 1 

indicate double-spotted pairs on one side. Ideally, the points form a straight line 

along the diagonal. The scatter plot is actually represented as a two-dimensional, 

rather than a linear, distribution. Deviations from this ideal behavior essentially 

reflect random fluctuations in multi-noise sources. P

4)
P
 

In microarray noise modeling, Dror et al. represented the transformation 

between true transcript concentration and observed value as a model form.P

7)
P The 

true transcript level was successfully estimated from the noise model and the prior 

distribution of true transcript levels using Bayesian theorem. However, numerous 

repetitions of microarray assay are required for determining noise parameters. Cho 



 3 
 

and Lee successfully estimated a large number of model parameters and true 

transcript levels from several microarray assays utilizing the iterated computation 

of Markov chain Monte Carlo techniques.P

10)
P However, the error effect was assumed 

to be independent and identical to normal distribution, and the parameter 

distributions were limited to representations as normal or gamma distribution. 

In this article, we propose representing the distribution of gene expression 

values from only one set of duplicated data on cDNA microarrays using a normal 

mixture distribution of true values. Gene expression values are estimated from the 

signal values of duplicated data. For this estimation, distribution of all duplicated 

data on one slide is modeled as a probability distribution. In the scatter plot, 

assuming that true values exist on the first principal component of the duplicated 

data and that the probability of noise in each true value has two-dimensional 

normal distribution, the plot distribution of duplicated data can be represented as 

a mixture distribution model of multiple normal two-dimensional distributions. 

Figure 2 shows a schematic diagram of a mixture distribution model for the 

duplicated data in Fig. 1.  

The mixture model provides a flexible and powerful tool to model various 

random phenomena.P

11)
P In microarray studies, several uses of this modeling 

technique have been proposed. Allison et al. proposed representing the distribution 

of p-values arising from testing the differences between two conditions using a 

mixture of multiple beta distributions. P

12)
P Pan et al. proposed estimating the 

distribution of a t-type test statistic and its null statistic using normal mixture 

models in order to identify genes with significantly altered expression.P

13)
P
 

An EM algorithm P

14,15)
P is used for estimating the parameters of the model. The 

probability that the duplicated data is shifted by noise from one gene expression 
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value is calculated from the model using Bayesian estimation. Total RNAs 

extracted from rice leaves at 4-hour intervals on the same day were used in 6 cDNA 

microarray experiments. These 6 data sets were used to investigate the present 

technique. The scale was introduced in order to evaluate the accuracy of the 

estimation for probability distribution function of noise. The genes in the data sets 

were then applied to clustering based on probability of true value. 

 

2 Systems and Methods 

2.1 Mixture distribution model of noise using duplicated data 

A schematic diagram of the duplicated data on the microarray used in this 

study is shown in Fig. 3. This microarray has n2  spots duplicated from n genes. 

The vector ix  of duplicated data i derived from i P

th
P gene is expressed as 

B ( ) ,, 21
T

ii xx=ix
B

                           (1) 

where xBi1B and x Bi2B, i = 1,2, …, n denote an observed value from the left and right sides 

of the slide, respectively, and the superscript T represents the transpose of a vector. 

The observed value is a logarithm of the sum of pixel values measured within the 

corresponding spot. The n2 -dimensional vector x
 
of observed data in the 

microarray is expressed as 

( ) .,,, 21
TT

n
TT xxxx Λ=

 
                        (2) 

 
Principal component analysis of B ,ix

B

 i = 1,2, …, n,B Bwas applied to understand the 

two-dimensional distribution of duplicated data in Fig. 1. The first principal 

component expresses the level of gene expression of duplicated data, as it has the 

biggest variance among the data. In this paper, original gene expression, which is 

not influenced by noise, is assumed to exist on the first principal component axis. 
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We call this original gene expression the true value. The second principal 

component, which is orthogonal to the first, expresses the deviation between 

duplicated data pairs. Multiple noise levels due to various factors lead to deviations 

in duplicated data. It is very difficult to estimate the influence of noise from only 

one pair of duplicated data; however, it is efficient to analyze the features of the 

distribution using all duplicated data in a microarray. To estimate the influence of 

noise on each gene, we propose a noise modeling technique using the distribution of 

duplicated data. The duplicated data distribution is modeled using a mixture of 

noise distributions centering on the true values. In this paper, the true value was 

considered to be a discrete value to reduce computation time. 

From the proposed model, the probability density function (p.d.f.) of a random 

vector with an observed random sample ix  is expressed as 

( ) ( ),;;
1
∑
=

=
g

j
jj ff jii θxψx π  ,                     (3) 

1
1

=∑
=

g

j
jπ  , 

where g, jπ , and ( )ji θx ;jf  denote the number of the discrete true value, j P

th
P 

mixing proportion and probability distribution function of noise distribution center 

on the j P

th
P true value, respectively. The parameter vectors are represented by ψ  

and jθ . 

The probability distribution function ( )ji θx ;jf  is considered to be normal 

two-dimensional distribution due to the general definition of random noise as 

follows, 
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( ) ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ −Σ−−Σ= −−−

jijiji txtxθx 12
1

1

2
1exp2; j

T
jjf π ,          (4) 

where 

( )Tjj tt 21 ,=jt ,                               

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Σ

2212

1211

jj

jj
j σσ

σσ
,                             

11jt , 2jt , 11jσ , 12jσ , and 22jσ  denote the corresponding values of the j P

th
P true value 

on the left and right sides, the variance on the left, the covariance of both, and the 

variance on the right, respectively. The parameters 
11jt  and 2jt  are fixed in order 

to indicate the true value, which exists on the first principal component axis at 

regular intervals, while the noise parameters 11jσ , 12jσ , and 22jσ  are unknown. 

The j P

th
P parameter vector jθ  is then expressed as 

B ( ) .,, 221211
T

jjj σσσ=jθ
B

                        (5) 

 The parameter vector ψ  containing g-1 mixing proportions 11 ,, −gππ Λ  is 

expressed as 

( ) .,,,, 11
TTT

g g1 θθψ ΛΛ −= ππ                      (6) 

 

2.2 Parameter estimation using EM algorithm 

Noise parameters of the model are estimated according to eqs. (3) and (4) using 

observed data. The likelihood function ( )ψL  for ψ  of eq. (3) is expressed as 

( ) ( )∏
=

=
n

i

fL
1

;ψxψ i .                          (7) 

The log likelihood function for ψ  in eq. (3) is given by 
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⎩
⎨
⎧

=
0
1

ijz

( ) ( )

( ) ,;log

;loglog

11

1

⎭
⎬
⎫

⎩
⎨
⎧

=

=

∑∑

∑

==

=

g

j
jj

n

i

n

i

f

fL

ji

i

θx

ψxψ

π
                  (8) 

Differentiating eq. (8) with respect to ψ  does not yield an explicit solution, 

and the following unobservable data vector z  is introduced in order to solve the 

problem, 

( ) ,,, TTT
nzzz Λ1=                              (9) 

where  

( ) ,,,,1
T

igiji zzz ΛΛ=iz  

  … iP

th
P data comes from jP

th
P true value            

… otherwise                                   

For example, when the i P

th
P data comes from the second true value among three true 

values,  

( ) ( ) .0,1,0,, 321
TT

iii zzz ==iz                      (10) 

If ijz  were observable, the maximum likelihood estimate jπ̂  for jπ  is given by 

.ˆ
1
∑
=

=
n

i

ij
j n

z
π                             (11) 

However, eq. (11) cannot be immediately calculated because ijz  is unobservable. In 

this paper, the EM algorithm is used for estimating the parameters of the model. 

This algorithm is a computation technique for obtaining maximum likelihood 

estimates by iterating the E-step and M-step. In the E-step, the conditional 

expectation of complete-data log likelihood is calculated using the observed data x  

on the current estimated parameter. The complete-data y  is expressed as 
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( ) ., TTT zxy =                              (12) 

The complete-data likelihood function ( )ψcL  for ψ  can be expressed as 

( ) ( ){ } ,;
1 1
∏ ∏
= =

⎥
⎦

⎤
⎢
⎣

⎡
=

n

i

g

j

z
jjc

ijfL ji θxψ π                    (13) 

The complete-data log likelihood function for ψ  is expressed as 

( ) ( )

( )∑∑∑∑

∑∑

= == =

= =

+=

=

n

i

g

j
jij

n

i

g

j
jij

n

i

g

j
jjijc

fzz

fzL

1 11 1

1 1

,;loglog

;loglog

ji

ji

θx

θxψ

π

π
           (14) 

On the (k+1) P

th
P iteration, the conditional expectation of complete-data log likelihood 

given observed data x  is given by 

( ){ } ( )

( ) ( ) ( ),;log|log|

|;loglog|log

1 11 1

1 11 1

)()(

)()(

∑∑∑∑

∑∑∑∑

= == =

= == =

+=

⎭
⎬
⎫

⎩
⎨
⎧

+=

n

i

g

j
jij

n

i

g

j
jij

n

i

g

j
jij

n

i

g

j
jijc

fZEZE

fzzELE

kk

kk

jiψψ

jiψψ

θxxx

xθxxψ

π

π
  (15) 

where ( )x
ψ

|)( ⋅kE  and ijZ  denote the conditional expectation given x  on the kP

th
P 

parameter ( )kψ  and the random variable corresponding to ijz .  

The value of ijZ  is 0 or 1 from eq. (9), and ( )x
ψ

|)( ijZE k  is expressed as 

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ,

|1

|00|11|)(

k
ij

ij

ijijij

z

ZP

ZPZPZE

k

kkk

=

==

=⋅+=⋅=

x

xxx

ψ

ψψψ

            (16) 

where ( ) ( )x
ψ

|⋅kP  and ( )k
ijz  denote the conditional probability distribution of ijZ  

given x  on the kP

th
P parameter ( )kψ  and the conditional probability when ijZ  is 1, 

respectively. Substituting eq. (16) into eq. (15) yields 
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( ){ } ( ).;loglog|log
1 1

)(

1 1

)(
)( ∑∑∑∑

= == =

+=
n

i

g

j
j

k
ij

n

i

g

j
j

k
ijc fzzLE k jiψ

θxxψ π        (17) 

On the (k+1) P

th
P iteration in the EM algorithm, ( )k

ijz  is calculated in the 

parameter )(kψ  in the E-step, and )1( +kψ  is obtained from the maximum 

likelihood estimate using ( )k
ijz  in the M-step. These steps are iterated until the 

difference between )(kψ  and )1( +kψ  becomes less than the stopping criterion. 

Converged values represent an estimate of parameter ψ . McLachlan et al. showed 

equations the E- and M-steps on the (k+1) P

th
P iteration as follows,P

15)
P  

E-step. 

)(k
ijz  can be calculated using Bayes’ Theorem according to the following 

equation, 

( )
( )

( )
( )∑

=

=

=

g

j

k
j

k
j

k
j

k
j

k

k
j

k
jk

ij

f

f

f
f

z

1

)()(

)()(

)(

)()(
)(

;

;

;
;

ji

ji

i

ji

θx

θx

ψx
θx

π

π

π

                        (18) 

where )(k
ijz  is a posterior probability, and )(k

jπ
 
is a prior probability.  

M-step. 

 )1( +k
jπ  is calculated using )(k

ijz  from eq. (11). 

n

z
n

i

k
ij

k
j

∑
=+ = 1

)(

)1(π                            (19) 

The j P

th
P covariance matrix is given by, 
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( )

( ) ( )( )
( )

,

1

11

∑

∑

=

=+

−−
=Σ n

i

k
ij

n

i

Tk
ij

k
j

z

z jiji txtx                     (20) 

 

The conditional probability ( )ij xt |p , i=1,…,n, j=1,…,g, of true value jt , given 

observed value ix , is expressed as 

( ) ( ) ( )
( ) ( )
( )
( )

,
;

;

|

|
|

1

1

∑

∑

=

=

=

=

g

j
jj

jj

g

j

f

f

pp

pp
p

ji

ji

jij

jij
ij

θx

θx

txt

txt
xt

π

π
                      (21) 

where, by Bayes’ Theorem, ( )jtp  and ( )ji tx |p  correspond to jπ  and ( )ji θx ;jf , 

respectively. Equation (21) has the same form as eq. (18), i.e., the convergent ijz , 

i=1,…,n, j=1,…,g, also represents the probability that observed value ix  is derived 

from true value jt . An example of probability distribution of estimated true value 

is shown in Fig. 4. The j P

th
P true value in the figure is represented by the mean of 

true value 1jt  on the left side and 2jt  on the right. The expected probability 

distribution of a true value is defined as the center expression value of the 

corresponding gene. The possible range excludes 5% on both sides of the probability 

distribution of ( )ij xt |p .  

 

2.3 Clustering using noise modeling of duplicated data 

The estimated probability of true value is used for clustering of the gene 

expression profile. The profile includes center expression values of gene expression 
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data obtained from numerous microarray experiments; each gene expression profile 

can be represented as a vector in the data space having dimensions corresponding 

to the number of experiments. The clustering is based on center expression value. 

In this study, adaptive quality-based clustering P

16)
P was applied as the method of 

clustering. This method does not require that the number of clusters be predefined 

or that each gene in the data set be forced into a cluster. 

This clustering procedure first consists of a step to find the center of the cluster 

in the data space, followed by a step to determine the radius of the cluster. The 

subspace within the radius around the cluster center is defined as the cluster 

region. The gene expression profile inside the cluster region is identified with an 

element of the corresponding cluster. Gene expression profiles assigned to a cluster 

are excluded in the next cluster search. This procedure is iterated until the stop 

criterion is satisfied. 

 In the first step of adaptive quality-based clustering, the mean profile of all 

expression profiles is initiated as the cluster center. Iteratively, the mean profile of 

these expression profiles is calculated within a sphere of decreasing radius and 

subsequently, the cluster center moves toward this mean profile. 

 If the initialized cluster center exists on a low-density area of the data set, the 

clustering procedure may stop mid-course. In this paper, we improved the 

algorithm in order to efficiently identify the cluster center. The data space was 

previously divided into small areas and data density was calculated for every area. 

The highest density data center is then initiated as the cluster center, followed by 

steps to find the cluster center and to determine the cluster radius. During the 

clustering procedure, the initial cluster center is iteratively selected from a 

high-density area in the dividend parts. 
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 In the gene profile clusters identified using the conditional probability 

( )ij xt |p  obtained from the proposed noise modeling technique, the possible range 

of probability is utilized. An example of the possible range among gene profiles 

having six gene expression data points is shown in Fig. 5. The gene profile may 

fluctuate within the possible ranges around the center expression values. By 

considering the possible range, the gene profile can be handled not as a point but 

as a territory in the data space. The center expression value is used to cluster 

representative gene expressions, and genes that are not included in clusters are 

clustered again based on the possible range. If at least one possible range overlaps 

a cluster region, the gene can thereby be identified as a candidate element of the 

corresponding cluster. A schematic diagram to represent relationship between 

cluster and possible range in three-dimensional space is shown in Fig. 6. 

 

3 Results 

3.1 Noise modeling using rice cDNA microarray 

Total RNAs extracted from rice leaves at 4-hour intervals on the same day were 

used for the 6 cDNA microarray assays. The experiments provided 6 sets of 

duplicated data. In this study, the plotted data included 4515 duplicated data 

points, including 40 control spots, obtained from a hybridization experiment using 

a cDNA microarray for rice. The proposed technique was applied to estimate gene 

expression values based on duplicated values. The probability density distributions 

of duplicated data and estimation using mixture distribution modeling in array 1 

(the 6 microarrays are numbered from 1 to 6 as a matter of convenience) are shown 

in Figs. 7(a) and (b), respectively. Figure 7(b) shows results of estimation when the 

number of discrete true values is set to 10, 30, and 60. The scale α  is introduced 
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in order to evaluate the accuracy of estimation for the probability distribution 

function 

( ) ( )
( )

∑∑
∑∑= =

=′ =′

′
−=

m

p

m

q
m

p

m

q

f

f
n

qpcount
1 1

1 1

;

;,

ψβ

ψβα ,                   (22) 

where 

,
2
1,

2
1

minmin

T

xqxxpx ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆⎟
⎠
⎞

⎜
⎝
⎛ −+∆⎟

⎠
⎞

⎜
⎝
⎛ −+=β  

.
2
1,

2
1

minmin

T

xqxxpx ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆⎟
⎠
⎞

⎜
⎝
⎛ −′+∆⎟

⎠
⎞

⎜
⎝
⎛ −′+=′β  

xBmin B, xBmax B, m, and x∆  denote the minimum and maximum of the data set on the left 

side of a microarray, and the parameters to divide length | xBmin B−xBmax B|, and length | 

xBmin B−xBmax B|/m, respectively. The function count(p,q) outputs the number of duplicated 

data included within a square region from ( ) xpx ∆⋅−+ 1min  to xpx ∆⋅+min  on the 

left side and from ( ) xqx ∆⋅−+ 1min  to xqx ∆⋅+min  on the right side. The 

coefficient α  of true values from 1 to 20 is shown in Fig. 8. 

 

3.2 Clustering 

Six data sets of the rice cDNA microarray experiments were subjected to 

clustering using the adaptive quality-based clustering technique. Before the 

clustering process, the duplicated data was normalized using positive control 

spots. P

17)
P The results of clustering against 4475 genes except the corresponding 40 

control spots are shown in Table 1. Listed are the number of genes having 

estimated center values of six gene expressions included within the cluster region 



 14 
 

and genes having at least one possible range that overlaps the cluster region. In 

clustering using the adaptive quality-based clustering technique, there are genes 

that aren’t classified into any clusters. The latter column shows more genes can be 

detected from genes that are classified into other cluster or aren’t classified into 

any clusters in the previous clustering by taking possible ranges into consideration. 

The proposed method can give biological researchers more genes as candidate of 

gene function research. To confirm visually the success in the detection of genes 

that are similar to the target cluster, gene expression behavior in the 

representative clusters is shown in Fig. 9.  

 

4 Discussion and Conclusion 

The estimated mixture probability distributions using the proposed model were 

very similar to the density distributions of the corresponding experimental data. 

This indicates the viability of mixture distribution modeling of duplicated data on 

cDNA microarrays. Figure 7 shows the efficiency of mixture distribution modeling; 

the use of more than 15 true values provides a more consistent and lower 

coefficient than non-mixture modeling with one true value. 

 The objective of the cDNA microarray experiments performed in this study was 

the discovery of genes regulated by circadian rhythms in rice. Gene expression 

regulated by circadian rhythms would be represented as a daily fluctuation of RNA 

levels under continuous dark conditions. In the clustering analysis, cluster 3 

exhibited this feature, and thus cluster 3 is believed to include genes regulated by 

circadian rhythms. The list of genes believed to be regulated by circadian rhythms 

in cluster 3 is shown in Table 2. Listed are the number of genes assigned to cluster 

3 and the genes having at least one possible range included within the cluster 
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region. The 19 genes in the latter column are a substantial proportion of the 36 in 

cluster 3. By clustering while taking possible ranges into consideration, more genes 

can be classified as candidates in biological processes. 

In this study, cDNA microarray was used to test our proposed method. This 

method can also be applied to oligonucleotide arrays because questions of 

statistical significance and quality control are similar for both types of array.P

4)
P  
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Figure captions 

Fig. 1. Scatter plot of double-spotted signals obtained from cDNA microarray. 

Fig. 2. Schematic diagram of mixture distribution modeling for duplicated data. 

Fig. 3. Schematic diagram of duplicated data on the microarray used in this study. 

Fig. 4. Example of probability distribution of estimated true value. 

Fig. 5. Examples of possible range in gene profile. 

Fig. 6. Schematic diagram to represent relationship between cluster and possible 

range 

Fig. 7(a) Two-dimensional distribution of probability density of duplicated data on 

array 1, (b) Estimation using mixture distribution modeling. 

Fig. 8. Coefficient α  of true values from 1 to 20 

Fig. 9. Behavior of gene expressions in clusters 1, 2, and 3. The 20 genes were 

randomly extracted as samples from each cluster.
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Table 1. Clustering of six rice cDNA microarray data sets. 

 

 No. of assigned genes No. of genes having possible 
ranges overlapping cluster 

Cluster 1 2667 384 

Cluster 2 535 255 
Cluster 3 183 126 

Cluster 4 164 40 

Cluster 5 42 25 
Cluster 6 49 16 
Cluster 7 23 12 

Cluster 8 14 10 

Cluster 9 15 6 

Cluster 10 14 8 

Cluster 11 5 3 

Cluster 12 7 2 

Cluster 13 3 1 

Cluster 14 4 1 

Cluster 15 4 0 

Cluster 16 2 0 
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Table 2. List of genes potentially regulated by circadian rhythms in cluster 3. 
 

Function No. of assigned genes 
No. of genes having 

possible ranges 
overlapping cluster 

Amino acid metabolism 1 0 
ATP synthesis 1 1 
Carbohydrate metabolism 3 0 
Cell duplication 0 1 
Cell organization 1 3 
Lipid metabolism 3 0 
Photosynthesis, electron transport 1 1 
Protein synthesis & degradation 2 1 
Signal transduction 2 3 
Transcription 2 1 
Transport 1 1 
Others 2 0 
Unknown 17 7 

Total 36 19 




