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Pattern association by a lateral-alignment-free

optical neural network

N. Tsumura, Y. Fujii, K. Itoh, Y. Ichioka

Department of Applied Physics, Osaka University, Japan

Pattern association by a lateral-alignment-free optical neural
network. We propose an optical technique that solves artial-
ly the problem of alignment of optical neural networks. The
synaptic weights are recorded on a special SLM that s locat-
ed between input and output layers of optical artificial neu-
rons. The SLM can accept the optical signals for changing
the synaptic weights from both the input and output layers.
The positions of synaptic weights to be recorded are auto-
matically aligned by the positions of the neurons in the both
layers. Results of an association experiment from Chinese
characters to alphabets are presented.

Musterverkniipfung durch ein seitwiirts ausrichtungsfreies op-
tisches neuronales Netz. Wir schlagen cine optische Technik
vor, die teilweise das Problem der Ausrichtung optischer
neuronaler Netze 18st. Die synaptischen Gewichte werden
auf einem speziellen SLM aufgenommen, der sich zwischen
Eingangs- und Ausgangsschichten der optischen kiinstlichen
Neuronen befindet. Der SLM kann die optischen Signale
zum Wechsel der synaptischen Gewichte von den Eingangs-
wie von den Ausgangsschichten registrieren. Die Position
der zu registrierenden synaptischen Gewichte werden durch
die Position der Neuronen in beiden Schichten automatisch
ausgerichtet. Resultate eines Experimentes zur Verkniipfung
chinesischer Zeichen zu Alphabeten werden vorgestellt.

1. Introduction

The techniques of optical interconnections are extensive-
ly studied for the implementation of large-scale artificial
neural networks. The artificial neural networks that have
optical interconnections are called optical neural net-
works [1-9] and attract much attention by virtue of the
speed and parallelism of light. The optical neural net-
works are categorized into holographic [4-7] and non-
holographic types [1 -4, 8, 9]. In the holographic type,
synaptic weights are recorded on a hologram in the dis-
tributed mode of representation. In the non-holographic
type. they are usually recorded on an SLM in the local-
ized mode of representation. It is clear that these types of
large-scale optical neural networks have the considerable
difficulty of aligning their optics because ol the possible
high density of interconnections and the remaining aber-
rations of optics. An alignment-free technique is expected
to remove this difficulty. In one of the holographic optical
neural networks [5], an alignment-free technique was
used. The interconnections are realized by holographic
gratings in a photorefractive crystal. The holographic
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gratings are formed with optical beams from artificial
neurons in the front and rear layers. In the non-holo-
graphic type of optical neural networks, however, no
alignment-free techniques have been proposed.

In this paper, we proposc a lateral-alignment-free tech-
nique for an optical neural network. We optically imple-
ment Willshaw's type of network [10] without the use of
holograms. In this network, input and output signals and
synaptic weights are represented by binary values. We
examined experimentally the alignment-free technique.
The results are presented in section 3. In the experiment,
the technique of sparse encoding [11] is used. An im-
proved version of the first network of ADAM (advanced
distributed associative memory [12]) is used for the sparse
encoding of input patterns.

2. Alignment-free optical neural network

The principle of the present alignment-free optical neural
network will be illustrated in this section. Signal process-
ing process in this network is similar to that of the usual
optical neural networks. The learning process is, howev-
er, different. This process makes the optical system free
from the strict alignment in the plane normal to the opti-
cal axis.

2. f. Architecture and signal processing

We adopted Willshaw's network [10] to realize the align-
ment-free technique. In the processing mode of the Will-
shaw's network, the operations of binary vector-matrix
multiplication and thresholding are necessary. Let x and
y denote the input and output pattern vectors, and let W
denote synaptic weight matrix. The operation of the net-
work is then written as,

y=f(Wx), (1)

where f(e) denotes the componentwise operation of
thresholding. In the present alignment-free optical neural
network, we employ the spatial coding method [8] pro-
posed by Ishikawa et al. to execute eq. (1). This method
can treat two-dimensional input patterns without rear-
ranging them into one dimensional pattern vector (see
ref. [8]).

An ideal model of the alignment-free optical neural
network is shown in fig. 1. Each artificial neuron in the
input layer has a light transmitter, whereas cach neuron
in the output layer is assumed to have a light transmitter/
receiver (photo-transceiver). In the processing mode,
when the input pattern is fed to the input layer, the array
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Fig. 1. Ideal model of alignment-free optical neural network
with no holograms.

of photo-transmitters in the input layer transmits optical
input signals to Binary SLM. The first single lens and an
array of lenses are used to form multiple images of an
input pattern for the spatial coding. The SLM that mem-
orizes binary values of the optical transmittance is placed
in the image plane of the multiple imaging system. We
assume here a transmission type of SLM. After training,
the synaptic weights are memorized in this SLM as a 2-D
pattern of optical intensity modulations. Each modula-
tion in this SLM is binary i.e., the incident light is allowed
to pass (state 1) or not (state 0). We assume that the states
of 0 and 1 correspond to the synaptic weights of 0 and 1,
respectively. The multiple images of the input pattern are
modulated by the synaptic weights. We will show later
that the 2-D pattern, that is recorded on the SLM and
acts as the synaptic weight matrix, is automatically locat-
ed at the exact position for modulating the multiple im-
ages. The modulated multiple images are imaged onto an
array of photo-transceivers. Each photo-transceiver de-
tects the total power incident on its aperture. The VSTEP
(vertical-to-surface transmission electro-photonic device)
[13] is an example of this ideal photo-transceiver. The
detected optical signals arc compared with a threshold in
an array of electronic circuits. This array of circuits pro-
duces a binary pattern as an ouput,

2.2, Automatic optical alignment in the learning mode

In the learning mode, training sets are fed successively to
the network. The training sets are desired pairs of input
and output patterns. The arrays of photo-transmitters in
the input and output layers send optical signal to the
SLM, simultancously. Fig. 2 illustrates the important
property of alignment-free recording of synaptic weights
in the learning mode. Multiple images (3 x 3) of the input
pattern (x) that are composed of 4 x 4 outputs (x;) of the
neurons (i) in the input layer are projected onto the SLM.
The desired output pattern (r) of the training pair that is
composed of 3 x 3 signal elements (1) is projected from

Fig. 2. Ilustration of a recording process of synaptic weights in
the present optical neural network.

the neurons (/) in the output layer at the opposite side of
the SLM. We assume that the SLM functions to produce
and keep the two-dimensional product of AND-opera-
tions between the multiple images of the input pattern
and the image of the output pattern. That is, the synaptic
weights are recorded at positions where the signals of the
both patterns of 3 x 3 x’s from the input layer and r from
the output layers meet on the SLM. The synaptic weight
(w,;) is recorded on the SLM at the locations determined
by the signals of x;, r;, as in fig. 2 (deep-black areas). Note
that fig. 2 illustrates the case where the input and output
patterns (x and r) are not exactly aligned. If the optical
system is precisely aligned, each multiple image is com-
pletely fitted into one of the element of the projected
image from the desired output pattern. In the present
case, the synaptic weight (w;)) is split into four parts.
Nevertheless, signals are correctly processed in the pro-
cessing mode. Suppose that an input signal (x;) is fed to
the input layer in the processing mode. The input pattern
is assumed to be placed at exactly the same position in the
optical system. This assumption is an important require-
ment for the consistency of the alignment-free recording
of synaptic weights, If this requirement is met, the input
signal passes through exactly the same position where the
synaptic weight (w,)) is recorded in the learning mode.
The signal reaches to the output neuron (j) on the basis
of an “optical reciprocity” [14]. This property is preserved
in any case, if the optical system is not deformed after the
learning process.

The present system has, however, a problem; signals
from some neurons in the input layer are not intercon-
nected optically to neurons in the output layer. A condi-
tion, that the projected area from an output neuron in-
clude at least one signal that is projected from an input
neuron, must be satisfied to interconnect the input and
output neurons optically. For example, suppose that neu-
ron (n) is located at the upper left corner in the input
layer, and neuron (m) is at the lower right corner in the
output layer as in fig. 2. The neurons (n) and (m) are not
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Fig. 3. Methods to satisfy the optical connectable condition in all
pairs of neurons in the input layer and in the output layers.

interconnected optically, because the above condition of
optical interconnection is not satisfied. Fig. 3 shows two
types of methods by which the condition of optical inter-
connection is satisfied. The multiple images that are pro-
iected on the SLM from the input layer and the image of
the output layers with a specific neuron are drawn in
fig. 3. In one method, a margin is given between the input
images that are set side by side as in fig. 3a). Suppose the
length of the margin is M, then the alignment of optical
system has the same amount of tolerance. In the other
method, the projected area from the input layer is extend-
ed by additional multiple images that are produced by
additional lenses in the lens array. Suppose the width of
the additional area is D on the SLM, the lateral-al-
lowance of the optical alignment is D. In the experiment
shown in the next section, the former method is used.
We also assume that repetition of this AND-opertion
results in overwriting of the successive products on the
SLM. In other words. OR-operations are carried out
between the recorded and current signals. This assump-
tion promises training of many associations. Suppose
that n-th training pairs is presented to the network. Let
x} and rj denote, respectively, signals at pre-synaptic neu-
ron (i) in the input layer and at the post-synaptic neuron
(/) in the output layer. The new synaptic weight (wj
associated with neurons (i) and (j) in the input and output
layers of the present neural network can be written as,

Y B
wi = wij tulxinr), (2)

where all the variables are binary, n and U denote the
AND- and OR-operations, respectively. The initial synap-
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Fig. 4. Architecture of ADAM.

tic weight (w)) for all i and j is set to be zero. This training
method of synaptic weights produces the same value of
synaptic weights which are decided by the Willshaw’s
method [10].

A ferroelectric-liquid-crystal (FLC)-SLM [15, 16] that
is optically addressable can execute above operations and
can be used as the SLM in the present system. When an
electric control pulse is applied, the transmittance of the
SLM is altered from low to high due to the rotation of
FLC molecules at the positions where intensities of inci-
dent light exceed a certain threshold. This recording
threshold can be changed by controlling height and/or
width of voltage of the electric pulse. The recording
threshold can be adjusted so that AND-operation is ex-
actly executed between the multiple images from the in-
put layer and the image from the output layer. The spatial
distribution of rotation angle of molecules is kept con-
stant or memorized if no electric control pulse is applied.
The OR-operation can readily be executed because the
SLM memorizes the spatial distribution of intensity
modulation additively.

3. Experiments

We made a preliminary experiment to examine the
present alignment-free technique. In addition, we im-
proved the Willshaw’s network by incorporating a
sparsely-encoding section at the front end of the network
to improve the capacity of associations.

3.1. Improvement of Willshaw's network by sparsely-
encoding network for the experiment

In the Willshaw’s network, neurons in the output layer
have a constant threshold. This threshold is adjusted
according to the activity in the input layer. The activity
is defined as the number of active neurons in the receplive
field. or the number of elements that have value 1 in the
vector of input pattern. If the activities of the input pat-
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Fig.5. Configuration of the experimental system.

terns are allowed to change from pattern to pattern, it is
difficult to fix an appropriate threshold in the output
layer. This difficulty was removed in ADAM [12]. The
architecture of the ADAM is shown in fig. 4. In the out-
put layer of the first network of ADAM, the threshold of
each neuron is always controlled by a signal from the
activity-counter, so that the activity of the output layer is
kept constant. The first network encodes input patterns
to class patterns [12] that have constant activity, and the
second network associates output patterns with the class
patterns. The technique of sparse encoding [11] improves
the storage capacity of the ADAM [12). The activities of
class-patterns are small in the case of sparse encoding.
Such the network may be called sparsely-encoding (SE)
network. The output layer of the SE network is called
here a sparsely-encoding layer, and the class patterns are
called sparsely-encoded patterns.

In the experiments, we use an improved ADAM’s SE
network. The synaptic weights of the SE network are
trained by input patterns in the training sets. The initial
synaptic weights are binary and randomized. Suppose we
present n-th training set to the network. When x? and ;7
respectively, denote the signals at neuron (i) in the input
layer and neuron (j) in the sparsely-encoding layer, the
synaptic weight (m{) between these neurons is modified as,

miy=m; 't n(qu ), )

where all variables are binary, 7 denotes the logical com-
plement of f. Note that the synaptic weights are pruned
during this training procedure. When we use this network
in the processing mode, we can eliminate the neurons that
show no activity in this training procedure.

We can show that the improved SE network can be
implemented by present alignment-frec technique. In the
implementation, the erasing mode of FLC-SLM may be
used. In the erasing mode, the optical modulation switch-
es to state 0 regardless of the previous state when an
optical signal above a threshold arrives. If we take the
complement of eq. (3) and use de Morgan formulas, we
can see that a reversal of an input pattern may be used
along with the FLC-SLM in the erasing mode. The activ-
ity-counter can be implemented electrically in the part of
electronic circuit array [17].

Sparsely-cncoded  Desired
pattern cutput pattem

Input pattem

Fig.6. An example of training scts (desired pairs of input pat-
terns and output patterns) and sparsely-encoded patterns of the
desired input patterns.

3.2. Optical system

The configuration of the experimental optical system is
shown in fig. 5. In this experiment, the SE network is
simulated by a personal computer because optical imple-
mentation requires the lens array of 17 x 17 elements. An
array of 4 x4 elements was only available at the time of
experiment. A liquid-crystal-display (LCD1) illuminated
by an incoherent light source functions as an array of
photo-transmitters for the neurons in the input layer. An
LCD2 and the charge-coupled-device (CCD) camera are
coupled together by a beam splitter (BS) so that they act
together as an array of the photo-transceivers. In this
system, the condition of optical interconnection is satis-
fied by the method described in sec. 2.2 by referring to
fig. 3a). The lateral tolerance of 1.8 mm was given in this
system, i.e. the margins between the projected input im-
ages are approximately 1.8 mm. Let us consider the pro-
cess of training the optical section of the present network.
Suppose that the sparscly-encoding network implement-
ed in the personal computer is already adapted to the
training patterns. Then, the sparsely-encoded patterns
are displayed on the LCD1, while the desired output
patterns are displayed on the LCD2. We used LAPS-
SLM [16] as an optically addressable FLC-SLM. We
used an array of 4x4 graded-index micro lenses
(SELFOC micro lenses [18]) for the multiple imaging of
the input pattern. The focal length of the micro lens is so
determined that the lens array makes an array of images
in the sensitive layer of the LAPS-SLM when the array is
brought into direct contact with the LAPS-SLM. The
diameter of a SELFOC micro lens is 2.0 mm. The thick-
ness and the focal lengths are 2.61 mm and 5.89 mm,
respectively. From the image taken by the CCD camera,
the personal computer simply sums up the modulated
optical signals for each neuron in the output layer and
binarizes the sum. The personal computer also sends the
control electric pulse to the LAPS-SLM.

3.3. Experimenial results

We carried out an experiment of associations from Chi-
nese characters to alphabets. The size of the Chinese
characters is 17 x 17 pixels, and that of the alphabets is
4 x 4 pixels. In the sparscly-encoding layer, 15 x 15 neu-
rons are used. The alphabetical characters that are de-
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Fig. 7.
area of view is approximately 1 x 1 em?),

Synaptic weights on LAPS-SLM after training. (The

sired output patterns are so designed that all the alpha-
bets have the same activity. This designing improves the
storage capacity of the network [19]. An example of the
training sets and their sparsely-encoded patterns used in
the experiment are shown in fig. 6. The 3600 optical inter-
connections that are necessary for all the association ex-
periment have been successively achieved. In the experi-
ment, the 14 training sets are completely memorized.

Synaptic weights that are recorded on LAPS-SLM af-
ter training are shown in fig. 7. Note that the sparsely-en-
coded patterns are rotated on the LAPS-SLM. The
LCD1 is inclined approximately 20 degree so that the
azimuth of polarization of input optical signal coincides
with that of liquid crystal molecules in the LAPS-SLM.
Fig. 7 covers an area of approximately 1x1 em? of
LAPS-SLM. It is shown that the high density of succes-
sive optical recording is achieved without strict align-
ment. The density of recording is at most 300 pixels/mm?
on the SLM. It should be noted that such an exact align-
ment might be impossible in practice without the help of
the alignment-free technique, The storage capacity of our
experimental system is practically limited by the blurring
of the recorded synaptic weights on the LAPS-SLM. The
blurring occurs after several repetitions of recording
sparsely-encoded patterns. In fig. 7, we can see that the
blurring occurs at the positions where many sparsely-en-
coded patterns are overwritten.

We then examined the robustness of the trained net-
work against random noise. Input patterns with random
noise are presented to the optical neural network with the
SE network which has been trained by the training sets
without noise. Fig. 8 presents experimental results about
robustness of the network; the fraction of correct associ-
ations is plotted as a function of fraction of noise. We can
see that the present system is robust against small frac-
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Fig. 8. Experimental results about robustness of the network.
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ig. 9. Examples of associations of patterns with noise. (The top
row is for 0% noise, the middle and bottom row are for 10% and
17% noise, respectively).

tion of noise. The examples of associations under the
presence of noise are shown in fig. 9. The top row shows
the process of association for the input pattern of 0%
noise, the middle and bottom rows are for the patterns of
10% and 17 % noise, respectively, [Uis shown that sparse-
ly-encoding process is sufficiently robust against the
noise of 10%, and no bit is changed in the sparsely-
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encoded pattern. In the case of 17 % noise, however, the
sparsely-encoded pattern is changed slightly. Neverthe-
less, the final association is perfect. We see that the ro-
bustness of associations against noise is enhanced by the
two-stage architecture. It is noted finally that without the
SE network only 3 patterns in 14 training patterns were
correctly memorized in the network system.

4, Discussions and conclusion

We have proposed an alignment-free technique of a non-
holographic type of optical neural networks. The most
important factor of this technique is that products of
AND-operations in the training procedurc are obtained
and overwritten in the SLM, simultaneously. By the use
of present self-aligning technique, we can overcome the
difficulty of alignment that is essential for large-scale op-
tical neural networks. The high density of the optical
recording that is at most 300 pixels/mm? on the SLM is
achieved in the present experiment.

In the presented optical neural network, we need to
adjust carefully the focus of multiple images in the optical
system, although we do not need to align most of the
components in the optical system. Defocusing of multiple
images results in the waste of high spatial resolution in-
herent in the SLM. An optical packaging technique (20,
21) may eliminate the need for the focusing.
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