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Abstract

A new hyperspherical classifier that performs reliable classification is presented. The new

classifier was inspired by the RCE network. The present classifier has two important features; (1) cells in the
last layer of the two-layered architecture have two thresholds, and (2) weight vectors are modified according
to training patterns. The two thresholds produce double hyperspheres in the pattern vector space. The
double hyperspheres determine regions of rejection. Patterns in these regions are rejected and not classified
in any classes. The weight vectors are optimized by modification. Results of practical experiments are
presented to compare the reliability of the new classifier with that of the RCE networks.
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L. INTRODUCTION

In real-world pattern classification, reliability is very
important. The reliability may be improved by exclud-
ing misclassification. In practical situations, it is essential
that a reliable classifier rejects strange and ambiguous
patterns. The strange patierns are those which are not
included in any trained classes. and the ambiguous
patterns are those which are included in more than one
class. The cost of misclassification is often much greater
than that of rejection. Hyperspherical classifiers''-*'
have the potential capability of rejecting the strange
and ambiguous patterns. because the classifiers make
regions of rejection which lie outside the hyperspheres
in the pattern vector space. The hyperspheres may be
formed appropriately to enhance the potential capability
of the hyperspherical classifier. In RBF (radial basis
function) networks,*"* the desired output is synthesized
from Gaussian functions with adaptable widths and
heights instead of the hyperspherical type of functions.
The RBF network can be used as a classifier.'* ™
Leonard et al. suggested a method® 1o judge whether
an input pattern is a strange pattern or not in the RBF
network. In this method, the probability density func-
tion of training patterns is estimated. When the esti-
mated density associated with an input pattern is low.
this input pattern is rejected as a strange pattern.

In this paper, we propose a new hyperspherical clas-
sifier that can appropriately reject the strange and
ambiguous patterns. These patterns are rejected without
the explicit estimation of the density of the training
patterns. The new classifier was inspired by the RCE
(restricted coulomb energy) networks."" %' In the
hyperspherical classifiers. the RCE networks have well-
known excellence in thetr training and processing
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abilities. The RCE network is trained by committing
a new cell, and adjusting the thresholds of existing
cells. The new cell is committed to the network if an
unclassified pattern is presented to the network. The
unclassified pattern vector is used as the weight vector
of the new prototype cell. The weight vectors are not
modified during the training process. The thresholds
are adjusted so that the training patterns are classified
or rejected in accordance with the supervising input.
The size of the RCE network is variable and is expected
to conform with the training patterns. The new classifier
has two major features that the RCE networks do not
have. First, the new classifier has two thresholds in
each cell in the last layer of the two-layered architecture.
The two thresholds produce double hyperspheres in
the pattern vector space. The double hyperspheres
determine a boundary hypersphere between a classified
region and an appropriate region of rejection. Secondly,
the weight vector associated with each cell in the new
classifier is modified when the cell becomes active in
the training mode. A gradient descent method is often
used'' '*' to modify the weight vectors in the RCE or
RBF types of networks. The training by the gradient
descent method is, however, much slower than the
training of the RCE network. The rule of weight modifi-
cation in the new classifier is the same as that of the
patch modification in the Dystal network,''® and the
training of the present classifier is as fast as the training
of the RCE network. By this weight modification, the
weight vectors are approximately optimized to reject
appropriately the strange and ambiguous patterns in
the new classifier.

In Section 2, we describe the architecture, the training
and the processing procedures of the proposed classifier.
Examples of the training process of the proposed
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classifier are presented in the case of two input cells.
In Section 3, experimental results of classification and
rejection are presented by using practical data to assess
the reliability of the present classifier and the RCE
networks.

2. DOUBLE-HYPERSPHERE NETWORK

2.1. Architecture

The new classifier may be called a double-hyper-
sphere (DH) network. The architecture of the DH
network is shown in Fig. 1. This architecture specifies
two processing layers: input and prototype layers. An
input pattern to be processed is fed to the input layer.
and the result of classification is obtained from the
prototype layer. The cells in the prototype layer and
the weight vectors associated with these cells are called
prototype cells and prototype vectors, respectively.
The structure of the prototype cell is shown in Fig. 2.
All prototype cells have the same structures. All the
prototype cells have seven parameters: prototype
vector p; (i =1 ~ n). distance d,. inter-class threshold
. intra-class threshold r{", state s, membership m;
and class ¢;. The network has two modes of operation:
training and processing modes. The transfer function
of each prototype cell 1s different in the training and
the processing modes. The transfer function of the i-th
prototype cell in the training mode is

d:;}jlipl . (”
s, =sgn(rt —d,). (2)

where f denotes the input vector from input layer.
| ] and sgn(e)are the Euclidean norm and the signum
function. respectively. In the mode of processing, the
state of the i-th cell 1s modified as

s, =sgn(rt - d)). (3)
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Fig. 1. Architecture of the DH network.
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Fig. 2. Structure of a prototype ce in the DH network.

where ri" is called the boundary threshold. The bound-
ary threshold is given by

r® = (1 —eyrl® + erl?, 4)
where the parameter e varies from 0 to 1. When the
state s, is equal to 1, we say that the cell is active. The

parameter ¢ governs the degree of rejection of the
resultant network.

2.2. Training and processing procedures

To train the DH network, the pairs of training
patterns and their classes (training classes) {(f;1;);

j=1~AN} are used. These pairs are called training

pairs, and may successively be fed to the network in
random order. In the initial state of the network, there
are no prototype cells. During the training of the
network. the prototype cells are committed to the
prototype layer, and the parameters of each prototype
cell; p,, '), r'" and m;, are modified. In all the prototype
cells, these modifications are made by the same rule.

Let us consider the modifications of the parameters
in the i-th prototype cell, in the case that the j-th
training pair (f, ;) is presented to the network. The
prototype cell transfers the training vector to the state
parameter s; according to the equations (1) and (2). At
that time, if the cell is not active, no modifications are
made in the cell. If the cell is active (i.e. the state s; is
1) and the class ¢; is equal to the training class ¢; and
the distance d; of the cell is the smallest in all prototype
cells. then the intra-class threshold r}”, the membership
m,. and the prototype vector p; are modified as follows.
Let x" denote the modified value of x. The membership
1s modified as

m; =m;+ 1, (5)

and the prototype vector is modified as,

pi=pi+{f;—plim; (6)

and r!"' is set to the larger value between r{’ and



Double hyperspheres in pattern vector space

1 £;— pill. These modifications force to move the proto-
type vector to the center of all the input vectors with
which the cell has become active. If the cell is active
and the class ¢; is not equal to a training class t;, then
the inter-class threshold r{”’ is modified so that the
modified inter-class threshold is set to be ri? = d,. At
this time, if the modified inter-class threshold ri¢’. be-
come smaller than the intra-class threshold r{”. the
prototype cell is removed from the network. This dele-
tion of the illusory cell is essential in training a network
that cansolve problems that are linearly unseparable.

After the above modifications. if no cells are active
in the network. a new prototype cell is committed to
the prototype layer. In the committed cell, the para-
meters are set as follows: (1) the input vector f; is
substituted for the prototype vector p,. (2) the inter-
class threshold r! is set to the smallest value of the
distance parameter in all cells whose classes are not
equal to the training class 1, (3) the class ¢; is set 1o the
training class ¢, (4) the intra-class threshold r{" and the
membership m; are set to 0 and 1. respectively. If there
are no prototype cells (1.e. the present training pair 1s
the first one introduced to the network), the inter-class
threshold ' is set to be the largest possible value in
the machine.

The term during which all the training patterns
are fed to the network may be called one epoch. The
order of feeding the training pairs is randomized at the
beginning of each epoch. and the epochs are repeated
until there are no commitments of prototype cells in
one epoch.

In the processing mode, all the prototype cells in the
network determine the distance d; and the state s,
according to the equations (1) and (3), respectively.
The class ¢; of the cell that is active and whose distance
d; 1s the shortest is selected to be the result of classifi-
cation. If no cells become active, the input pattern is
rejected as a pattern that does not include in any
classes of concern.

2.3. Examples of training process

The concrete training procedure will be shown by a
simple example of the DH network with two input
cells. Figures 3(a)—(g) show sequentially the stages in
the training process. The open squares and triangles in
the figures indicate training vectors in the first and the
second classes, respectively, and that the filled squares
and triangles indicate the labeled prototype vectors in
the first and the second classes, respectively. The double
hyperspheres produced by the two thresholds of a
prototype cell form in this case double circies in the
2D pattern vector space. The solid and broken circles
indicate those produced by the inter- and the intra-
class thresholds, respectively. In the training mode, if
an input vector is inside the solid circle, the cell becomes
active. The cross marks in the figures indicate the
presented training vector 1n each stage.

Figure 3(a) shows the initial state of the DH network
where there are no prototype cells. The first prototype
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Fig. 3. Examples of the training process of the DH network.

cell is committed to the network when the first training
pair is fed to the network as shown in Fig. 3(b). We
omitted the solid and broken circles in this state,
because the radius of each circle is the largest possible
value and zero, respectively. If the next input pattern
is correctly classified, then the prototype vector and
the intra-class threshold are modified as in Fig. 3(c).
In Fig. 3(d), the prototype cell is removed and a new
prototype cell is committed, because the modified inter-
cell threshold of the removed cell becomes smaller than
the intra-class threshold. Figure 3(e) shows the modifi-
cation of the inter-class threshold of the square proto-
type cell and commitment of a new triangular prototype
cell. Figure 3(f) shows the modification of a prototype
vector and an intra-class threshold. Figure 3(g) shows
the final state of the network. Note that each prototype
vector is located on the center of training vectors
surrounded by the circle, and each radius of the broken
circle is the smallest under conditions in which the
broken circle surrounds as many training vectors in
the same class as possible.

In the training process of the RCE network, the
newly committed prototype cell is made to have a
present training pattern as the prototype vector, and
this prototype vector is not modified during the training
process. It is clear that the training patterns that are
utilized as prototype vectors are always classified cor-
rectly. In this case, the commitment of a prototype cell
will converge, because the total number of the training
patterns is limited. Let us briefly discuss the conver-
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gence of the traimning process of the DH network
by dividing the problem into two types: the linearly
separable problem and the linearly unseparable problem.
For the linearly separable problem, the training patterns
that were utilized as prototype vectors are always
classified correctly, although the prototype vectors are
modified. This is because each prototype vector never
move out of the correct area in the pattern vector
space. However, for the linearly unseparable problem.
the modifications may cause the prototype vectors to
move out the correct area as in Fig. 3(c). Each prototype
cell 1s detected as the prototype cell that is out of the
correct arca when the intra-class threshold becomes
bigger than the inter-class threshold after the modifi-
cation of the intra-class threshold. In this case. the
detected cell 1s removed and a new cell 1s committed
asin Fig. 3(d). This process is not repeated because the
new cell prevent the prototype vector from moving out
of the correct area. As the deletion of the prototype cell
1s not repeated, the training process 1s expected to
converge. It is noted that we observed no process that
did not converge in our experiment.

2.4, Comparison of reliability of classification by
DH and RCE networks

Figures 4(a}and (b) show, respectively, examples of the
final state of the RCE and RCE-2'? networks by
using the same training pairs as in Fig. 3. The RCE-2
network s an improved RCE network and usually
demonstrates a higher rate of correct classification
than the original. It is shown in Fig. 4 that input pat-
terns tn the circular regions are classified to some
of the classes by these networks. Compared with Fig. 3(g)
these regions unnecessarily spread over the range of
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Fig. 4. Examples of the final state of training in the RCE and
RCE-2 networks.
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training vectors. Some strange pattern vectors that are
out of the range of the training vectors but remain in
these regions may be wrongly classified into some of
these classes. The capability of rejecting the strange
and ambiguous patterns will thus be small.

In the case of the DH network, we can see in Fig. 3(g)
that the regions that are surrounded by the broken
circles are appropriately spread over the range of train-
ing vectors. As stated previously, the parameter e is
used to control the boundary threshold r®. From the
examples of training shown in Figs 3(g) , 4(a) and 4(b),
we see that the degree of rejection of the DH network
is higher than that of the RCE and the RCE-2 networks,
even if the parameter e is set ta be the lowest value in
the DH network.

3. PRACTICAL EXPERIMENTS

3.1. Experiment

The data base used in the practical experiments
consists of images of segmented numerals. Each image
is a single numeral taken from the ID numbers that are
recorded on X-ray films of the human chest. Examples
are shown in Fig. 5. The digits are binary images of 12
by 14 pixel. Deformation and positional shift have
been introduced in these images during the processes
of recording, digitizing and segmentation. In the data
base, there are 3184 samples which were sampled from
139 sheets of the X-ray films. We compared the RCE,
RCE-2 and DH networks using this data base. A set
of 960 images of even numbers was used as a set of
training patterns and the rest of 952 images of even
numbers as a set of input patterns to be processed. To
estimate the degree of rejection against strange patterns,
a set of 1272 images of odd numbers was used as a set
of the strange patterns. We expect that ambiguous
patterns were included in the patterns of even digits to
be processed. We may assume that incorrectly classified
patterns of the even digits are identical to the ambi-
guous patterns that are not rejected by the networks.
The high reliability is warranted by the high rate of
rejection against the strange odd digits and the low
rate of incorrect classification against the ambiguous
even digits in the nature of these rates.

34367890123 45467879
43567890123456789
4567 8901234567 8%
456782 01234546787
3456789012345678%9

Fig. 5. Examples of segmented numericals that are recorded on the X-ray films.
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3.2. Experimental results

Table 1 shows the results of the experiments on the
RCE. RCE-2, DH networks. The parameter ¢ in the
DH network was fixed to be 0; te., the degree of
rejection was the lowest in the DH network. The
results show the rate of correct classification and incor-
rect classification against even digits, the rate of
rejection against strange patterns, the number of proto-
type cells and the number of epochs required for the
training. The averages and standard deviations were
obtained from 100 different initializations of the net-
works.

What we can see in Table | is as follows. The RCE-2
network had the lowest reliability of classification of
the three networks, because the RCE-2 network had
the highest rate of incorrect classification against the
even digits and the lowest rate of rejection against the
odd digits. The RCE network had higher reliability
than the RCE-2 network. Nevertheless, more than
30%, of the strange patterns could not be rejected. On
the other hand, the DH network had excellent reliability,
because the rate of rejection against the odd digits was
approximately 17°, higher than that of the RCE net-
work. It is noted that this result was obtained on the
condition that the parameter ¢ was set to be the smallest
value of 0. The rate of correct classification of the DH
network was as high as that of the RCE networks. The
DH network was expected to have the comparable
requirements for the memory capacity as the RCE
networks, because the number of the produced proto-
type cells was equivalent to those of the RCE networks.
The DH network learned as fast as the RCE networks.
because the number of required epochs for learning in
the DH network was as small as those of the RCE
networks. In this experiment, we can conclude that the
DH network had high reliability without losing the
advantages inherited from the RCE type of networks.
The only difficulty of the DH network was that the
training procedure became slightly more complicated
than the RCE networks, because more parameters
were tuned.

We investigated the case where the degree of rejection
(the parameter ¢) of the DH network varied. The
relationships between the rate of correct classification
against the even digits and rejection against the odd
digits, the rate of correct classification and incorrect
classification in the DH network are plotted in Figs 6
and 7, respectively, along with the results of the RCE

Rate of incorrect
class against
even digits(”,)

Rate of correct
class against
cven digits (°,)

RCE 99.27 +0.28 0.13+0.10
RCE-2 99.51 +0.22 031 +£0.19
DH 99.49 - 0.17 0.12 + 0.06

{e=0.0) B

The parameter ¢ of DH network was restricted to 0.0.

Table 1. Results of the experiment of RCE. RCE-2, DH network
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Fig. 6. Relationship between the rate of correct classification
against the even digits and rejection against the strange digits.
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Fig. 7. Relationship between the rate of correct classification
and incorrect classification against the even digits.

and RCE-2 networks. Each value was obtained from
the ensemble of 100 different initializations of the net-
works. The parameter ¢ was changed from 0.0 to 1.0
by steps of 0.1. We can see that the rate of rejection
against the strange patterns became higher and the
rate of incorrect classification against the even digits
became lower. The highest rate of rejection was 96.8%;
in the case that parameter ¢ was 1.0. It is important to
note that the high reliability of the DH network sacrificed
the high rate of correct classification.

Rate of rejection

against No. of No. of
odd digits(” ) prototype cells training epochs
67.43+9.38 39.0+25 40405
3337+ 13.11 3264238 30406
84.57+ 279 330+ 17 41+10
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4. CONCLUSION

In real-world pattern classification (e.g. character
recognition), reliability is very important. For achieving
high reliability, strange and ambiguous patterns should
be rejected as patterns that are not included in any
classes. We have presented a new network that has this
reliability of classification. The network has two thre-
sholds in each cell in the second layer. The reliability
can easily be controlled by changing one parameter of
the network. In the simple examples, we have shown
the training process. and the advantage of the present
network against the RCE networks. Practical experi-
ments have been presented by using the digits that are
sampled from X-ray films of human chests. The high
reliability and the high rate of correct classification of
the present network have been confirmed by these
experiments.
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